心理发展与教育 ›› 2025, Vol. 41 ›› Issue (4): 500-509.doi: 10.16187/j.cnki.issn1001-4918.2025.04.06

• 教与学心理 • 上一篇    下一篇

实物操作促进儿童几何概念学习的神经基础:一项fNIRS研究

施利承1, 冷英1, 谭顶良2   

  1. 1. 南通大学教育科学学院, 南通 226019;
    2. 南京师范大学教育科学学院, 南京 210097
  • 发布日期:2025-07-12
  • 通讯作者: 冷英, 谭顶良 E-mail:lengying@ntu.edu.cn;tandingliang@njnu.edu.cn
  • 基金资助:
    教育部人文社会科学研究青年基金项目(21YJC880062);江苏省社科基金重点项目(18JYA002)。

The Neural Basis of Physical Manipulation Promoting Children’s Learning of Geometric Concept: An fNIRS Study

SHI Licheng1, LENG Ying1, TAN Dingliang2   

  1. 1. School of Education Science, Nantong University, Nantong 226019;
    2. School of Education Science, Nanjing Normal University, Nanjing 210097
  • Published:2025-07-12

摘要: 实物操作有益于低龄儿童的学习。但对于具备抽象思维能力的儿童,实物操作促进还是阻碍学习,研究者观点并不一致,且实物操作发生作用的神经基础也有待明确。采用fNIRS技术,以几何概念“三视图”和“简单几何体”为学习内容,探讨高、低数学学业水平儿童在有、无实物操作时的学习结果和脑激活模式。结果发现:(1)实物操作可以促进儿童学习几何概念,相对于观察学习组,操作学习组的正确率显著更高,反应速度显著更快;(2)在几何概念编码阶段,实物操作引起体感联合皮层的激活,并伴有背外侧前额叶皮层的显著抑制,此效应在低数学学业水平者中更为突出;(3)在提取阶段,实物操作组的体感联合皮层再次激活,其激活水平正向预测正确率。结果表明:对于具备抽象思维能力的儿童,实物操作能够引起体感联合皮层激活,进而促进几何概念学习。实物操作具有增效减负的作用,有益于低数学学业水平儿童学习几何概念。

关键词: 儿童, 实物操作, 概念学习, fNIRS, 体感联合皮层, 背外侧前额叶皮层

Abstract: Physical manipulation is beneficial for young children's learning. However, for children with abstract thinking, researchers hold different opinions on whether physical manipulation promotes or hinders learning. The neural basis for the effect of physical manipulation has yet to be clarified. The learning-test paradigm and functional near-infrared spectroscopy (fNIRS) technique were used to compare the learning results and brain activation patterns between the physical manipulation group and the observational learning group. The results showed that: (1) Physical manipulation promoted children's learning of geometric concept. Children in the physical manipulation group extracted concepts faster and more accurate than those in the observational learning group; (2) In the stage of geometric concept encoding, physical manipulation caused the activation of the somatosensory association cortex, accompanied by a significant inhibition of the dorsolateral prefrontal cortex, which was more prominent in those with low academic level; (3) In the retrieval stage, the somatosensory association cortex was reactivated, and its activation level positively predicted the accuracy. These results suggested that physical manipulation activated the somatosensory cortex, thereby promoting geometric concept learning for children with abstract thinking. Physical manipulation promotes understanding of geometric concepts and alleviate cognitive load, which is more beneficial for children with lower mathematical academic level.

Key words: children, physical manipulation, concept learning, functional near-infrared spectroscopy, somatosensory association cortex, dorsolateral prefrontal cortex

中图分类号: 

  • G442
Aghajani, H., Garbey, M., & Omurtag, A. (2017). Measuring mental workload with EEG+fNIRS.Frontiers in Human Neuroscience, 11, 359. https://doi.org/10.3389/fnhum.2017.00359
Artemenko, C., Soltanlou, M., Bieck, S. M., Ehlis, A. C., Dresler, T., & Nuerk, H. C. (2019). Individual differences in math ability determine neurocognitive processing of arithmetic complexity:A combined fNIRS-EEG study.Frontiers in Human Neuroscience, 13, 227. https://doi.org/10.3389/fnhum.2019.00227
Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment.Neuroimage, 59(1), 36-47.
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory.Cortex, 49(5), 1195-1205.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate:A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society:Series B (Methodological), 57(1), 289-300.
Bellebaum, C., Tettamanti, M., Marchetta, E., Della Rosa, P., Rizzo, G., Daum, I., & Cappa, S. F. (2013). Neural representations of unfamiliar objects are modulated by sensorimotor experience.Cortex, 49(4), 1110-1125.
Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom:Its impact on spatial visualization and geometry knowledge of students.RMLE Online, 32(7), 1-12.
Borenson, H. (2013). The equal sign:A balancing act.Teaching Children Mathematics, 20(2), 90-94.
Brooks, N., & Goldin-Meadow, S. (2016). Moving to learn:How guiding the hands can set the stage for learning.Cognitive Science, 40(7), 1831-1849.
Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives.Journal of Educational Psychology, 105(2), 380-400.
Casasanto, D. (2009). Embodiment of abstract concepts:Good and bad in right- and left-handers.Journal of Experimental Psychology:General, 138, 351-367.
Causse, M., Chua, Z., Peysakhovich, V., Del Campo, N., & Matton, N. (2017). Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS.Scientific Reports, 7, 5222. https://doi.org/10.1038/s41598-017-05378-x
Chang, T. L., & Hsin, H. T. (2021). The effect of the Self-explain-Discuss-Re-explain (SDR) learning strategy on high- and low-achieving fifth-grade students' achievement in science.Research in Science and Technological Education, 39(4), 461-488.
Chen, Y., Lian, R., Yang, L., Liu, J., & Meng, Y. (2017). Working memory load and reminder effect on event-based prospective memory of high- and low-achieving students in math.Journal of Learning Disabilities, 50(5), 602-608.
Donovan, A. M., & Alibali, M. W. (2021). Toys or math tools:Do children's views of manipulatives affect their learning?Journal of Cognition and Development, 22(2), 281-304.
Dupeyrat, C., Escribe, C., Huet, N., & Re, I. (2011). Positive biases in self-assessment of mathematics competence, achievement goals, and mathematics performance.International Journal of Educational Research, 50, 241-250.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3:A flexible statistical power analysis program for the social, behavioral, and biomedical sciences.Behavior Research Methods, 39(2), 175-191.
Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C. J. (2014). Sensitivity of fNIRS to cognitive state and load.Frontiers in Human Neuroscience, 8(1),76.https://doi.org/10.3389/fnhum.2014.00076
Hoge, R. D., Franceschini, M. A., Covolan, R. J. M., Huppert, T., Mandeville, J. B., & Boas, D. A. (2005). Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI.NeuroImage, 25(3), 701-707.
Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM:Rethinking educational design in mathematics.Educational Psychology Review, 27(3), 371-389.
Ianì, F. (2019). Embodied memories:Reviewing the role of the body in memory processes.Psychonomic Bulletin and Review, 26(6), 1747-1766.
Jin, S. H., Lee, S. H., Yang, S. T., & An, J. (2020). Hemispheric asymmetry in hand preference of right-handers for passive vibrotactile perception:An fNIRS study.Scientific Reports, 10, 13423. https://doi.org/10.1038/s41598-020-70496-y
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737-749.
Korbach, A., Ginns, P., Brünken, R., & Park, B. (2020). Should learners use their hands for learning? Results from an eye-tracking study.Journal of Computer Assisted Learning, 36(1), 102-113.
Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex:A NIRS study of children.NeuroImage, 29(3), 706-711.
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems.Learning and Instruction, 19(2), 171-184.
Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical cognition:Promoting mathematical insight and proof using action and language.Cognitive Research:Principles and Implications, 2, 9.https://doi.org/10.1186/s41235-016-0040-5
Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction:Using the hands to learn math.Psychological Science, 25(4), 903-910.
Novak, M., & Schwan, S. (2021). Does touching real objects affect learning?Educational Psychology Review, 33(2), 637-665.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm:A meta-analysis of normative functional neuroimaging studies.Human Brain Mapping, 25, 46-59.
Pouw, W. T. J. L., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives.Educational Psychology Review, 26(1), 51-72.
Quaresima, V., & Ferrari, M. (2019). A mini-review on functional near-infrared spectroscopy (fNIRS):Where do we stand, and where should we go?Photonics, 6(3), 87. https://doi.org/10.3390/photonics6030087
Rau, M. A. (2020). Comparing multiple theories about learning with physical and virtual representations:Conflicting or complementary effects? Educational Psychology Review, 32(2), 297-325.
Rau, M. A., & Herder, T. (2021). Under which conditions are physical versus virtual representations effective? Contrasting conceptual and embodied mechanisms of learning.Journal of Educational Psychology, 113(8), 1565-1586.
Roth, W. M., & Thom, J. S. (2009). Bodily experience and mathematical conceptions:From classical views to a phenomenological reconceptualization.Educational Studies in Mathematics, 70(2), 175-189.
Rivella, C., Cornoldi, C., Caviola, S., & Giofrè, D. (2021). Learning a new geometric concept:The role of working memory and of domain-specific abilities.British Journal of Educational Psychology, 91(4), 1537-1554.
Sermier D., R., & Bless, G. (2013). The impact of including children with intellectual disability in general education classrooms on the academic achievement of their low-, average-, and high-achieving peers. Journal of Intellectual and Developmental Disability, 38(1), 23-30.
Singh, A. K., & Dan, I. (2006). Exploring the false discovery rate in multichannel NIRS.NeuroImage, 33(2), 542-549.
Soltanlou, M., Sitnikova, M. A., Nuerk, H. C., & Dresler, T. (2018). Applications of functional near-infrared spectroscopy (fNIRS) in studying cognitive development:The case of mathematics and language.Frontiers in Psychology, 9, 277. https://doi.org/10.3389/fpsyg.2018.00277
Son, J. Y., Smith, L. B., Goldstone, R. L., & Leslie, M. (2012). The importance of being interpreted:Grounded words and children's relational reasoning.Frontiers in Psychology, 3, 45. https://doi.org/10.3389/fpsyg.2012.00045
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting:The role of embodiment in chemistry education.Learning and Instruction, 55, 80-92.
Tak, S., & Ye, J. C. (2014). Statistical analysis of fNIRS data:A comprehensive review.NeuroImage, 85, 72-91.
Tian, F., Lin, Z.-J., & Liu, H. (2013). EasyTopo:A toolbox for rapid diffuse optical topography based on a standard template of brain atlas.Optical Tomography and Spectroscopy of Tissue X, 8578, 458-467.
Weissgerber, S. C., Grünberg, C., & Neufeld, L. (2022). The interplay of math anxiety and math competence for later performance.Social Psychology of Education, 25(4), 977-1002.
Wilson, M. (2002). Six views of embodied cognition.Psychometric Bulletin & Review, 9(4), 625-636.
Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM:Statistical parametric mapping for near-infrared spectroscopy.NeuroImage, 44(2), 428-447.
Zacharia, Z. C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students?Early Childhood Research Quarterly, 27(3), 447-457.
何金彩, 朱雨岚. (主编). (2018).神经心理学. 人民卫生出版社.
梅锦荣. (编). (2011). 神经心理学. 中国人民大学出版社.
孟迎芳, 郭春彦. (2009). 内隐与外显记忆的编码与提取非对称性关系. 心理学报, 41(8), 694-705.
肖筱茜, 叶智方, 郑丽, 薛贵. (2016). 记忆编码和提取中的神经激活模式再现. 北京师范大学学报:自然科学版, 52(6), 765-772.
张丹丹, 王驹, 赵君, 陈淑美, 黄琰淋, 高秋凤. (2020). 抑郁倾向对合作的影响:双人同步近红外脑成像研究.心理学报, 52(5), 609-622.
[1] 王宇轩, 刘梦连, 杨滢晖, 毕鸿燕. 学龄儿童与成人形音整合的比较研究:字形与字音的相互影响[J]. 心理发展与教育, 2025, 41(4): 457-464.
[2] 王彦姣, 黄家桢, 龙嘉, 王沛. 领域一般和领域特殊能力与计算障碍的内在联系及其启示——基于元分析视角[J]. 心理发展与教育, 2025, 41(4): 473-481.
[3] 冯娜, 梁峰, 王芬, 何春丽, 张慧. 基本情绪与道德情绪对不同年龄群体道德判断的影响[J]. 心理发展与教育, 2025, 41(4): 491-499.
[4] 邢淑芬, 白荣, 刘霞, 李森. 母亲拒绝与多巴胺基因对学前儿童外化问题的联合作用:努力控制的近端机制[J]. 心理发展与教育, 2025, 41(4): 518-527.
[5] 张璟, 刘格格, 曹碧华. 背景线索对儿童选择性信任的影响:积极信息和非循环解释信息的作用[J]. 心理发展与教育, 2025, 41(3): 313-321.
[6] 李莉, 李倩倩, 阮世芳, 张云运. 师幼互动质量与儿童发展的领域内和跨领域关联——基于国内外45项实证研究的元分析[J]. 心理发展与教育, 2025, 41(3): 332-347.
[7] 林悦, 苏彦捷. 儿童的注意瞬脱:注意在时间维度上的精细化发展[J]. 心理发展与教育, 2025, 41(2): 292-304.
[8] 周海淳, 陈英和, 戚玥, 陈悦, 杜星雨, 于玲珺, 于晓. 注意缺陷多动障碍儿童的类比能力缺陷: 执行功能还是类比策略?[J]. 心理发展与教育, 2025, 41(1): 1-11.
[9] 谢瑞波, 方园园, 伍新春, 阮世芳, 赵英. 小学中年级儿童成语理解的发展轨迹及其影响因素[J]. 心理发展与教育, 2025, 41(1): 68-76.
[10] 徐珊珊, 黄书珍, 崔秀敏, 陈慧, 蔺秀云. 留守儿童人际敏感性与问题行为的相互作用: 个体间和个体内效应[J]. 心理发展与教育, 2025, 41(1): 86-98.
[11] 李艳玮, 黄一依, 翟清灼, 周文沁, 袁宗金. 儿童早期易怒:特性、评估、风险因素与干预[J]. 心理发展与教育, 2025, 41(1): 135-144.
[12] 崔佳歆, 冯佳佳, 左钰涵, 崔占玲, 周新林. 形状知觉在儿童语言能力中的独立性预测作用[J]. 心理发展与教育, 2024, 40(6): 782-791.
[13] 肖雪, 李燕芳. 群体竞争对儿童公平分配行为的影响:群体偏见动机的作用[J]. 心理发展与教育, 2024, 40(6): 792-807.
[14] 冯瑶, 王佳雯, 沈岚岚, 李宜逊, 宋学玲, 伍新春, 李虹, 陈文, 程亚华. 小学低年级儿童部件知识对三年级汉字识别和阅读理解的预测[J]. 心理发展与教育, 2024, 40(6): 816-823.
[15] 林丹华, 冯姝慧, 申子姣, 肖家乐. 流动儿童亲子沟通与同伴侵害亚类别的关系:基于潜在剖面分析[J]. 心理发展与教育, 2024, 40(6): 832-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!