Psychological Development and Education ›› 2018, Vol. 34 ›› Issue (4): 443-452.doi: 10.16187/j.cnki.issn1001-4918.2018.04.08
Previous Articles Next Articles
GAO Ruiyan1, NIU Meixin2, YANG Tao2, ZHOU Xinlin3
CLC Number:
G442
Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447-455.Bailey, D. H., Zhou, X., Zhang, Y., Cui, J., Fuchs, L. S., Jordan, N. C., et al. (2015). Development of fraction concepts and procedures in u.s. and chinese children. Journal of Experimental Child Psychology, 129, 68-83.Berch, Daniel B., Foley, Elizabeth J., Hill, Rebecca J., & Ryan, Patricia McDonough. (1999). Extracting parity and magnitude from Arabic numerals:Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74(4), 286-308.Bonato, M., Fabbri, S., Umilta, C., & Zorzi, M. (2007). The mental representation of numerical fractions:real or integer?. Journal of Experimental Psychology:Human Perception and Performance, 33(6), 1410-1419.Booth, J. L., & Newton, K. J. (2012). Fractions:Could they really be the gatekeeper's doorman? Contemporary Educational Psychology, 37(4), 247-253.Booth, J. L., Newton, K. J., & Twissgarrity, L. K. (2014). The impact of fraction magnitude knowledge on algebra performance and learning. Journal of Experimental Child Psychology, 118(1), 110-118.Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189-201.Dehaene, S. (1997). The number sense:How the mind creates mathematics. New York:Oxford University Press, 53-76.Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 12(1), 119-149.Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123(123), 53-72.Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104-122.Hevia, M. D. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198-207.Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain:An fmri investigation. Neuroimage, 47(1), 403-413.Jacob, S. N., & Nieder, A. (2009). Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 29(14), 4652-4657.Lemaire, P., & Lecacheur, M. (2002). Children's strategies in computational estimation. Journal of Experimental Child Psychology, 82(4), 281-304.Liu, C. H., Xin, Z. Q., Lin, C. D., & Thompson, C. A. (2013). Children's mental representation when comparing fractions with common numerators. Educational Psychology, 33(2), 175-191.Liu, Y. (2017). Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction. British Journal of Educational Psychology, 87(5), 1-18.Mullis, I. V. S., Martin, M. O., Foy, P., Olson, J. F., Preuschoff, C., Erberber, E., et al. (2008). TIMSS 2007 international mathematics report:Findings from IEA's trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA:TIMSS & PIRLS International Study Center, Boston College. 31-42.Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA:TIMSS & PIRLS International Study Center, Boston College. 36-50.Opfer, J. E., & Devries, J. M. (2008). Representational change and magnitude estimation:Why young children can make more accurate salary comparisons than adults. Cognition, 108(3), 843-849.Opfer, J. E., Thompson, C. A., & Devries, J. M. (2007). Why children make better estimates of fractional magnitude than adults. Xxix Conference of the Cognitive Science Society. 1361-1366.Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology Human Perception & Performance, 36(5), 1227-1238.Siegler, R. S. (1996). Emerging minds:The process of change in children's thinking. New York:Oxford University Press, 49-83.Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691-697.Siegler, R. S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school. Psychological Science, 19(8), 759-763.Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation:Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-243.Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296.Stapel, J. C., Hunnius, S., Bekkering, H., & Lindemann, O. (2015). The development of numerosity estimation:Evidence for a linear number representation early in life. Journal of Cognitive Psychology, 27(4), 400-412.Stevenson, H. W., Chen, C., & Uttal, D. H. (1990). Beliefs and achievement:A study of black, white, and hispanic children. Child Development, 61(2), 508-523.Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap:Fraction understanding is central to mathematics achievement in students from three different continents. Learning & Instruction, 37(3), 5-13.Van Galen, M. S., & Reitsma, P. (2008). Developing access to number magnitude:A study of the SNARC effect in 7-to 9-year-olds. Journal of Experimental Child Psychology, 101(2), 99-113.Wang, Y. Q., & Siegler, R. S. (2013). Representations of and translation between common fractions and decimal fractions. Chinese Science Bulletin, 58(36), 4630-4640.Zhou, Z., Peverly, S. T., & Lin, J. (2005). Understanding early mathematical competencies in american and chinese children. School Psychology International, 26(4), 413-427.陈英和. (2015). 儿童数量表征与数概念的发展特点及机制. 心理发展与教育, 31(1), 21-28.郭红力. (2010)小学高年级儿童的分数数量表征(硕士学位论文). 山东师范大学,济南.卢淳, 郭红力, 司继伟, 孙燕. (2014). 不同数字线下儿童与成人分数估计的表征模式.心理发展与教育, 30(5), 449-456.孙玉, 司继伟, 黄碧娟. (2016). 分数的数量表征.心理科学进展, 24(8), 1207-1216.辛自强, 李丹. (2013). 小学生在非符号材料上的分数表征方式.心理科学,36(2), 364-371.张帆, 赖颖慧, 陈英和. (2015). 儿童数字线表征的发展——心理长度的影响.心理发展与教育,31(2), 149-156.张丽, 卢彩芳, 杨新荣. (2014). 3~6年级儿童整数数量表征与分数数量表征的关系.心理发展与教育,30(1), 1-8.张丽, 辛自强, 王琦, 李红. (2012). 整数构成对分数加工的影响.心理发展与教育, 28(1), 31-38.周广东, 莫雷, 温红博. (2009). 儿童数字估计的表征模式与发展. 心理发展与教育, 25(4), 21-29. |
|