心理发展与教育 ›› 2014, Vol. 30 ›› Issue (5): 449-456.
• 认知与社会性发展 • 下一篇
卢淳, 郭红力, 司继伟, 孙燕
LU Chun, GUO Hong-Li, SI Ji-wei, SUN Yan
摘要: 以44名小学六年级儿童与40名大学生为被试,通过0~1和1/100~1/10两种数字线的NP(数字位置)和PN(位置数字)估计任务系统考察儿童与成人的分数估计的表征方式。结果显示:(1)儿童和成人在0~1数字线的NP和PN任务上都呈线性表征,但在1/100~1/10数字线下,两组被试在NP任务上却呈对数表征,在PN任务上呈指数表征;(2)NP任务的错误百分比均高于PN任务,且儿童在两数字线下的准确性均明显低于成人。
中图分类号:
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6), 189-201. Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press. Gibbon, J., & Church, R. M. (1981). Time left: Linear versus logarithmic subjective time. Journal of the Experimental Analysis of Behavior, 7(2), 87-107. Mix, K. S., Huttenlocher, J., & Levine, S.C.(200). Quantitative development in infancy and early childhood. New York: Oxford University Press. Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. NeuroImage, 47(1), 403-413. Kallai, A. Y., & Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35 (6), 1845-1864. Nieder, D., & Deheane, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32(1), 185-208. Opfer, J. E., & Devries, J. M. (2008). Representational change and magnitude estimation: Why young children can make more accurate salary comparisons than adults. Cognition, 108(3), 843-849. Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1227-1238. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. Siegler, R. S., & Booth, J. L. (2005). Development of numerical estimation: A review. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 197-212). New York: Taylor & Francis. Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-243. Siegler, R. S., & Pyke, A. A. (2012). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994-2004. Vallentin, D., & Nieder, A. (2010). Representations of visual proportions in the primate posterior parietal and prefrontal cortices. European Journal of Neuroscience, 32(8), 1380-1387. Zhang, L., Xin, Z., Li, F., Wang, Q., Ding, C., & Li, H. (2012). An ERP study on the processing of common fractions. Experimental Brain Research, 217(1), 25-34. 郭红力. (2010). 小学高年级儿童的分数数量表征. 硕士论文. 山东师范大学. 刘春晖, 辛自强. (2010). 分数认知的"整数偏向"研究:理论与方法. 心理科学进展, 18(1), 65-74. 卢彩芳. (2013). 三至六年级儿童整数数量表征与分数数量表征的关系. 硕士论文. 西南大学. 莫雷, 周广东, 温红博. (2010). 儿童数字估计中的心理长度. 心理学报, 42(5), 569-580. 倪玉菁. (1999). 五、六年级小学生对分数的意义和性质的理解. 心理发展与教育, 15(4), 26-30. 汪运起. (2013). 儿童的分数和小数数量表征及其发展. 博士论文. 浙江大学 辛自强, 李丹. (2013). 小学生在非符号材料上的分数表征方式. 心理科学, 36(2), 364-371. 辛自强, 刘国芳. (2011). 非符号分数与整数计算能力的发展及其与数字记忆的关系. 心理科学, 34(3). 520-526. |
[1] | 曹碧华, 曾春雲, 廖虹, 李富洪. 心理长度对二年级儿童数字线估计表征的影响[J]. 心理发展与教育, 2021, 37(2): 190-198. |
[2] | 高瑞彦, 牛美心, 杨涛, 周新林. 4~8年级学生分数数量表征的准确性及形式[J]. 心理发展与教育, 2018, 34(4): 443-452. |
[3] | 张帆, 赖颖慧, 陈英和. 儿童数字线表征的发展——心理长度的影响[J]. 心理发展与教育, 2015, 31(2): 149-156. |
[4] | 张丽, 卢彩芳, 杨新荣. 3~6年级儿童整数数量表征与分数数量表征的关系[J]. 心理发展与教育, 2014, 30(1): 1-8. |
[5] | 周广东, 莫雷, 温红博. 儿童数字估计的表征模式与发展[J]. 心理发展与教育, 2009, 25(4): 21-29. |
|