心理发展与教育 ›› 2021, Vol. 37 ›› Issue (2): 190-198.doi: 10.16187/j.cnki.issn1001-4918.2021.02.06

• 认知与社会性发展 • 上一篇    下一篇

心理长度对二年级儿童数字线估计表征的影响

曹碧华, 曾春雲, 廖虹, 李富洪   

  1. 江西师范大学心理学院, 南昌 330022
  • 发布日期:2021-03-23
  • 通讯作者: 曹碧华 E-mail:caobihua@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金(31760285,31860278,31960182);江西省研究生创新基金(YC2019-S144);江西师范大学研究生创新基金(YJS2018018)。

The Influence of Mental Distance on the Representation in Number Line Estimation for Second-grade Children

CAO Bihua, ZENG Chunyun, LIAO Hong, LI Fuhong   

  1. School of Psychology, Jiangxi Normal University, Nanchang 330022
  • Published:2021-03-23

摘要: 从心理长度的角度探讨二年级儿童在0~100和0~1000数字范围存在不同表征方式的原因。实验一要求二年级儿童完成长度均为10cm,范围分别为0~100和0~1000的数字线估计任务。实验二要求儿童对长度分别为10cm和18cm,范围均为0~1000的数字线进行估计。结果发现在两个实验中二年级儿童的估计均存在心理长度,但与以往研究的一年级儿童相比,心理长度的范围有所缩小。随着数字范围的增大或长度的减小,儿童的表征方式出现了从线性表征向对数表征的转变趋势。这些结果表明不精确的表征方式可能与心理长度策略的使用有关,心理长度在一定程度上影响了二年级儿童的估计表征方式。

关键词: 二年级儿童, 心理长度, 线性表征, 对数表征

Abstract: Two experiments explored why second-grade children rely on different numerical representations in two numerical ranges from the perspective of mental distance. In experiment 1, 30 second graders were asked to estimate the locations of numbers on 10cm number lines with the contexts of 0~100 and 0~1000. In experiment 2, another 30 children from the second grade were asked to estimate the placements in the context of 0~1000 under the line's lengths of 10cm and 18cm. The results showed that mental distance did exist in both experiments, but second graders' ranges of mental distance were smaller than the first graders. With the increasing of numerical range or the decreasing of line's length, children's representation changed from linear representation to logarithmic representation. Taken together, the imprecise representation might be related to the strategy of mental distance, which affected children's representation partly.

Key words: second-grade children, mental distance, linear representation, logarithmic representation

中图分类号: 

  • B844
Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation:Evidence against a representational shift. Developmental Science, 14(1), 125-135.
Case, R., & Okamoto Y. (1996). The role of central conceptual structures in the development of children's thought. Monographs of the Society for Research in Child Development, 61(1-2),v-265.
Dehaene, S. (1997). The number sense:How the mind creates mathematics. New York:Oxford University Press.
Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children:Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 1-17.
Houdé, O., & Guichart, E. (2001). Negative priming effect after inhibition of number/length interference in a piaget-like task. Developmental Science, 4(1), 119-123.
Siegler, R. S. (1996). Emerging minds:The process of change in children's thinking. New York:Oxford University Press.
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation:Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-243.
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444.
Opfer, J. E., & Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology, 55(3), 169-195.
van Viersen, S., Slot, E. M., Kroesbergen, E. H., Van't Noordende, J. E., & Leseman, P. P. M. (2013). The added value of eye-tracking in diagnosing dyscalculia:A case study. Frontiers in Psychology, 4(679), 1-13.
White, S. L., & Szücs, D. (2012). Representational change and strategy use in children's number line estimation during the first years of primary school. Behavioral and Brain Functions, 8(1), 1-12.
陈英和. (2015). 儿童数量表征与数概念的发展特点及机制. 心理发展与教育, 31(1), 21-28.
付馨晨, 李晓东. (2017). 认知抑制——问题解决研究的新视角. 心理科学, 40(1), 58-63.
胡林成, 熊哲宏. (2017). 数字表征的表象赋义效应:来自数字线估计任务的证据. 心理科学, 40(2), 303-309.
胡林成, 熊哲宏. (2018). 时间赋义对数字空间表征的影响:来自数字线估计任务的证据. 心理科学, 41(1), 58-63.
李晓东, 黄艳秋. (2007). 类皮亚杰数量守恒任务中的负启动效应. 应用心理学, 13(2), 149-153.
李晓东, 徐雯, 李娜燕. (2012). 潜逻辑运算类皮亚杰守恒任务中的负启动效应. 心理科学, 35(2), 358-363.
刘国芳, 辛自强. (2012). 数字线估计研究:"模型"背后的策略. 心理研究, 5(2), 27-33.
柳笛, 杨纯. (2017). 儿童数量表征研究评述. 华东师范大学学报(教育科学版), 35(5), 138-163.
莫雷, 周广东, 温红博. (2010). 儿童数字估计中的心理长度. 心理学报, 42(5), 569-580.
潘茂明. (2011). 6~7岁儿童数字估计能力发展的追踪研究(硕士学位论文). 首都师范大学.
宋广文, 李晓芹, 朱振菁. (2013). 小学儿童数字线估计的心理表征模式. 数学教育学报, 22(5), 52-56.
吴晓超. (2017). 儿童数量表征能力发展的追踪研究. 心理研究, 10(6), 37-43.
徐华, 陈英和. (2012). 儿童数字线估计研究的述评与前瞻. 心理研究, 5(5), 46-50.
周广东, 莫雷, 温红博. (2009). 儿童数字估计的表征模式与发展. 心理发展与教育, 25(4), 21-29.
张丽, 卢彩芳, 杨新荣. (2014). 3~6年级儿童整数数量表征与分数数量表征的关系. 心理发展与教育, 30(1), 1-8.
张帆, 赖颖慧, 陈英和. (2015). 儿童数字线表征的发展——心理长度的影响. 心理发展与教育, 31(2), 149-156.
[1] 高瑞彦, 牛美心, 杨涛, 周新林. 4~8年级学生分数数量表征的准确性及形式[J]. 心理发展与教育, 2018, 34(4): 443-452.
[2] 张帆, 赖颖慧, 陈英和. 儿童数字线表征的发展——心理长度的影响[J]. 心理发展与教育, 2015, 31(2): 149-156.
[3] 卢淳, 郭红力, 司继伟, 孙燕. 不同数字线下儿童与成人分数估计的表征模式[J]. 心理发展与教育, 2014, 30(5): 449-456.
[4] 周广东, 莫雷, 温红博. 儿童数字估计的表征模式与发展[J]. 心理发展与教育, 2009, 25(4): 21-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!