心理发展与教育 ›› 2023, Vol. 39 ›› Issue (3): 379-390.doi: 10.16187/j.cnki.issn1001-4918.2023.03.09

• 教与学心理 • 上一篇    下一篇

近似数量系统与数学能力的关系:一项元分析

程阳春1,2,3, 黄瑾1,2   

  1. 1. 华东师范大学教育学部, 上海 200062;
    2. 北京师范大学中国基础教育质量监测协同创新中心 华东师范大学分中心, 上海 200062;
    3. 豫章师范学院学前教育学院, 南昌 330103
  • 出版日期:2023-05-15 发布日期:2023-05-13
  • 通讯作者: 程阳春 E-mail:chengyc211@163.com
  • 基金资助:
    全国教育科学“十四五”规划2021年度国家一般课题(BHA210122)。

Association between the Approximate Number System and Mathematical Competence: A Meta-analysis

CHENG Yangchun1,2,3, HUANG Jin1,2   

  1. 1. Faculty of Education, East China Normal University, Shanghai 200062;
    2. East China Normal University Branch, Collaborative Innovation Center of Assessment for Basic Education Quality at Beijing Normal University, Shanghai 200062;
    3. Department of Preschool Education, Yuzhang Normal University, Nanchang 330103
  • Online:2023-05-15 Published:2023-05-13

摘要: 近似数量系统(ANS)与数学能力的关系是国际认知与心理研究的经典问题,大量研究进行了探索,但仍存在争议。为了揭示二者关系及其方向和调节机制,本研究对来自55项研究、59个独立样本、12661名被试的242个效应值进行了元分析。结果发现,ANS与数学能力之间存在稳定的中相关,二者关系是双向的,受ANS测量指标、数学能力内容和年龄的调节。研究结果为深入的纵向研究、实验研究和干预研究奠定了基础,为数学教育提供了实证依据和视角。

关键词: 近似数量系统, 数学能力, 元分析

Abstract: Numerous researches have been dedicated to exploring the association between the Approximate Number System (ANS) and mathematical competence in the past two decades. However, various contradictory results have been reported. It remains unclear whether and to what extent and direction the relationship differs systematically and whether variables such as index, task type and task presentation of ANS, math content, and participant age are additional moderators. We investigated these questions by employing of a meta-analysis. The literature yielded 55 articles, 59 independent samples reporting 242 effect sizes found with 12661 participants. The main effect analysis indicated a significant positive correlation (r=0.271) between ANS and mathematical competence. Significantly, the association between ANS and math ability was reciprocal. The moderation analysis revealed that the association was moderated by the index of ANS, math content and participant age. In addition, 82 or more participants are needed to detect the effect. The study set the foundation for further longitudinal, experimental and interventional research and shed light on mathematical education.

Key words: approximate number system, mathematical competence, meta-analysis

中图分类号: 

  • G442
带*的文献表示纳入元分析中的文献。
*Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM.Behavioral and Brain Functions, 9(1), 1-14.
*Anobile, G., Stievano, P., & Burr, D. C. (2013). Visual sustained attention and numerosity sensitivity correlate with math achievement in children.Journal of Experimental Child Psychology, 116(2), 380-391.
*Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12-28.
*Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement:Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375-388.
*Braham, E. J., & Libertus, M. E. (2017). Intergenerational associations in numerical approximation and mathematical abilities. Developmental Science, 20(5), e12436. https://doi.org/10.1111/desc.12436
*Braham, E. J., & Libertus, M. E. (2018). When approximate number acuity predicts math performance:The moderating role of math anxiety. PLoS ONE, 5(5), e195696. https://doi.org/10.1371/journal.pone.0195696
Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia.Trends in Cognitive Sciences, 14(12), 534-541.
*Cai, D., Zhang, L., Li, Y., Wei, W., & Georgiou, G. K. (2018). The role of approximate number system in different mathematics skills across grades.Frontiers in Psychology, 9, 1733. https://doi.org/10.3389/fpsyg.2018.01733
*Castronovo, J., G bel, S. M., & Valdes-Sosa, P. A. (2012). Impact of high mathematics education on the number sense.PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance:A meta-analysis. Acta Psychologica, 148, 163-172.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:Erlbaum.
Cohen, J. (1992). A power primer.Psychological Bulletin, 112(1), 155-159.
Dehaene, S. (1997). The number sense:How mathematical knowledge is embedded in our brains. Oxford University Press
*Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, Longitudinal Associations Between Math Ability and Approximate Number System Precision in Childhood. Journal of Cognition and Development, 20(1), 56-74.
*Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement.Journal of Experimental Child Psychology, 123, 53-72.
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology:Evidence from pirahã language and cognition.Cognition, 108(3), 819-824.
*Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes:Contributions of inhibitory control. Developmental Science, 16(1), 136-148.
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74-78.
*Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406.
*Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N.,… Chambers, C. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement.PLoS ONE, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
*Gimbert, F., Camos, V., Gentaz, E., & Mazens, K. (2019). What predicts mathematics achievement? Developmental change in 5-and 7-year-old children. Journal of Experimental Child Psychology, 178, 104-120.
Ginsburg, H. P., & Baroody, A. J. (2003).Test of early math ability (3rd ed.). Austin, Texas:Pro Ed.
*Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement.Nature, 455(7213), 665-668.
*He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students:A Longitudinal Cross-Lagged Analysis.Frontiers in Psychology, 7, 1052. https://doi.org/10.3389/fpsyg.2016.01052
Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude:An fMRI study.NeuroImage, 49(1), 1006-1017.
Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193-206.
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107.
Inglis, M., Batchelor, S., Gilmore, C., & Watson, D. G. (2017). Is the ANS linked to mathematics performance?The Behavioral and Brain Sciences, 40, e174-e174. https://doi.org/10.1017/S01405 25X16002120
Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system.Acta Psychologica, 145, 147-155.
*Jiménez Lira, C., Carver, M., Douglas, H., & LeFevre, J. (2017). The integration of symbolic and non-symbolic representations of exact quantity in preschool children. Cognition, 166, 382-397.
*Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R.,… Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58.
*Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685.https://doi.org/10.3389/fpsyg.2015.00685
*Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103.
*Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300.
*Libertus, M. E., Feigenson, L., & Halberda, J. (2013a). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133.
*Libertus, M. E., Feigenson, L., & Halberda, J. (2013b). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829-838.
*Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373-379.
Lindskog, M., Winman, A., & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 462. https://doi.org/10.3389/fpsyg.2014.00462
*Lonnemann, J., Linkersd rfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills.Journal of Neurolinguistics, 24(5), 583-591.
*Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence.Proceedings of the National Academy of Sciences, 5(46), 18737-18742.
*Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726.
*Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development.Journal of Educational Psychology, 112(6), 1167-1182.
*Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237.
*Negen, J., & Sarnecka, B. W. (2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children?British Journal of Developmental Psychology, 33(1), 92-105.
Nys, J., Ventura, P., Fernandes, T., Querido, L., & Leybaert, J. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1), 13-22
*O'Connor, P. A., Morsanyi, K., & McCormack, T. (2018). Young children's non-numerical ordering ability at the start of formal education longitudinally predicts their symbolic number skills and academic achievement in maths. Developmental Science, 21(5), e12645. https://doi.org/10.1111/desc.12645
Odic, D., Le Corre, M., & Halberda, J. (2015). Children's mappings between number words and the approximate number system.Cognition, 138, 102-121.
* Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A., & Halberda, J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17-26.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement:An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1186/s13643-021-01626-4
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019.
*Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive abilities and approximate number system to early mathematics.British Journal of Educational Psychology, 84(4), 631-649.
*Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic:The mediation role of numerical knowledge.Journal of Experimental Child Psychology, 157, 111-124.
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system.Psychological Science, 24(6), 1037-1043
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503.
*Praet, M., Titeca, D., Ceulemans, A., & Desoete, A. (2013). Language in the prediction of arithmetics in kindergarten and grade 1. Learning and Individual Differences, 27, 90-96.
*Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison:Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults.Acta Psychologica, 140(1), 50-57.
*Purpura, D. J., & Logan, J. A. R. (2015). The nonlinear relations of the approximate number system and mathematical language to early mathematics development.Developmental Psychology, 51(12), 1717-1724.
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2006).Publication bias in meta-analysis:Prevention, assessment and adjustments. John Wiley & Sons.
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence:A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372
Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers.PLoS ONE, 11(4), e0153072. https://doi.org/10.1371/journal.pone.0153072
Siegler, R. S. (2016). Magnitude knowledge:The common core of numerical development.Developmental Science, 19(3), 341-361.
*Silver, A. M., Elliott, L., Imbeah, A., & Libertus, M. E. (2020). Understanding the unique contributions of home numeracy, inhibitory control, the approximate number system, and spontaneous focusing on number for children's math abilities. Mathematical Thinking and Learning, 22(4), 296-311.
*Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A. (2015). Identifying the cognitive predictors of early counting and calculation skills:Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 16-37.
*Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116-18120.
Szücs, D., & Myers, T. (2016). A critical analysis of design, facts, bias and inference in the approximate number system training literature:A systematic review. Trends in Neuroscience and Education, 6, 187-203.
*Toll, S. W. M., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. H. (2015). The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17.
*van Marle, K., Chu, F. W., i, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505.
*VanDerHeyden, A. M., Broussard, C., Snyder, P., George, J., Lafleur, S. M., & Williams, C. (2011). Measurement of kindergartners' understanding of early mathematical concepts. School Psychology Review, 40(2), 296-306.
Verguts, T., & Fias, W. (2004). Representation of number in animals and humans:A neural model.Journal of Cognitive Neuroscience, 16(9), 1493-1504.
Wang, J., Halberda, J., & Feigenson, L. (2020). Emergence of the link between the approximate number system and symbolic math ability. Child Development, 92(2), e186-e200. https://doi.org/10.1111/cdev.13454
*Wei, W., Lu, H., Zhao, H., Chen, C., Dong, Q., & Zhou, X. (2012). Gender Differences in Children's Arithmetic Performance Are Accounted for by Gender Differences in Language Abilities. Psychological Science, 23(3), 320-330.
*Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1), 157-181.
Wilkey, E. D., & Ansari, D. (2020). Challenging the neurobiological link between number sense and symbolic numerical abilities.Annals of the New York Academy of Sciences, 1464(1), 7-98.
*Wong, T. T. (2020). Are the acuities of magnitude representations of different types and ranges of numbers related?Testing the core assumption of the integrated theory of numerical development. Cognitive Development, 54, 100888. https://doi.org/10.1016/j.cogdev.2020.100888
*Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E. C. D. M. (2013). Individual differences in kindergarten math achievement:The integrative roles of approximation skills and working memory. Learning and Individual Differences, 28, 119-129.
*Zhang, Y., Chen, C., Liu, H., Cui, J., & Zhou, X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7), 807-824.
*Zhang, Y., Liu, T., Chen, C., & Zhou, X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning and Individual Differences, 71, 1-12.
*Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency.Frontiers in Psychology, 6, 1364. https://doi.org/10.3389/fpsyg.2015.01364
贾砚璞, 张丽, 徐展. (2019). 自适应的数感训练对低年级儿童数学能力的影响. 数学教育学报, 28(02), 30-34.
康丹, 张利, 蔡术, 刘江萍, 陆梅怡, 刘秋香. (2020). 儿童近似数量系统精确性与数学能力的关系研究. 数学教育学报, 29(3), 19-24+31.
*孔海燕, 孙雨, 宋广文. (2017). 小学生近似数量表征系统和工作记忆与数学成绩的关系. 数学教育学报, 26(2), 14-18.
梁笑, 康静梅, 王丽娟. (2021). 个体近似数量系统与其数学能力之间的关系:发展研究的证据. 心理科学进展, 29(05), 827-837.
刘文, 秦梦嫄. (2019). 近似数量系统敏锐度与符号数学能力的关系、训练研究及展望. 辽宁师范大学学报(社会科学版), 42(01), 40-47.
*刘亚飞, 原梦, 李振兴. (2019). 小学生数感与数学能力的关系. 江苏第二师范学院学报, 35(05), 77-83.
*牛玉柏, 时冉冉, 曹贤才. (2016). 学前儿童近似数量系统敏锐度与符号数学能力的关系. 心理发展与教育, 32(02), 129-138.
*张继英. (2019). 5~6岁儿童近似数量系统精确性和数学能力关系的研究(硕士学位论文).华东师范大学, 上海.
周新林. (2016). 教育神经视野中的数学教育创新. 北京:教育科学出版社.
[1] 谢和平, 王燕青, 王福兴, 周宗奎, 邓素娥, 段朝辉. 记忆的生成绘图效应及其边界条件:一项元分析[J]. 心理发展与教育, 2024, 40(1): 29-43.
[2] 牛湘, 冉光明. 同伴关系与幼儿问题行为关系的三水平元分析[J]. 心理发展与教育, 2023, 39(4): 473-487.
[3] 高峰, 白学军, 章鹏, 曹海波. 中国青少年父母教养方式与自杀意念的元分析[J]. 心理发展与教育, 2023, 39(1): 97-108.
[4] 谢云天, 史滋福, 尹霖, 兰洛. 中国父母教养方式与儿童学业成绩关系的元分析[J]. 心理发展与教育, 2022, 38(3): 366-379.
[5] 牛凯宁, 李梅, 张向葵. 青少年友谊质量和主观幸福感的关系:一项元分析[J]. 心理发展与教育, 2021, 37(3): 407-418.
[6] 颜志强, 苏彦捷. 认知共情和情绪共情的发展差异:元分析初探[J]. 心理发展与教育, 2021, 37(1): 1-9.
[7] 辛素飞, 岳阳明, 辛自强. 1996至2016年中国老年人心理健康变迁的横断历史研究[J]. 心理发展与教育, 2020, 36(6): 753-761.
[8] 雷丽丽, 冉光明, 张琪, 米倩文, 陈旭. 父母教养方式与幼儿焦虑关系的三水平元分析[J]. 心理发展与教育, 2020, 36(3): 329-340.
[9] 康丹, 文鑫. 心理旋转训练对5~6岁儿童空间能力和数学能力的影响[J]. 心理发展与教育, 2020, 36(1): 19-27.
[10] 周丽, 王福兴, 谢和平, 陈佳雪, 辛亮, 赵庆柏. 积极的情绪能否促进多媒体学习?基于元分析的视角[J]. 心理发展与教育, 2019, 35(6): 697-709.
[11] 李松, 冉光明, 张琪, 胡天强. 中国背景下自我效能感与心理健康的元分析[J]. 心理发展与教育, 2019, 35(6): 759-768.
[12] 辛素飞, 王一鑫. 中国大学生成就动机变迁的横断历史研究:1999~2014[J]. 心理发展与教育, 2019, 35(3): 288-294.
[13] 蒋舒阳, 刘儒德, 甄瑞, 洪伟, 金芳凯. 高中生数学能力实体观对数学学习投入的影响:学业自我效能感和消极学业情绪的中介作用[J]. 心理发展与教育, 2019, 35(1): 48-56.
[14] 辛素飞, 岳阳明, 辛自强, 林崇德. 1996至2015年中国老年人社会支持的变迁:一项横断历史研究[J]. 心理发展与教育, 2018, 34(6): 672-681.
[15] 颜志强, 苏彦捷. 共情的性别差异:来自元分析的证据[J]. 心理发展与教育, 2018, 34(2): 129-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!