心理发展与教育 ›› 2019, Vol. 35 ›› Issue (4): 439-446.doi: 10.16187/j.cnki.issn1001-4918.2019.04.07

• 教与学心理学 • 上一篇    下一篇

元认知监测与算术知识制约小学儿童心算策略运用能力的发展:一年纵向考察

刘伟方1, 张佳佳2, 胡冬梅2, 张明亮2, 司继伟2   

  1. 1. 三亚学院法学与社会学学院, 三亚 572022;
    2. 山东师范大学心理学院, 济南 250308
  • 发布日期:2019-08-28
  • 通讯作者: 司继伟,E-mail:sijiwei1974@126.com E-mail:sijiwei1974@126.com
  • 基金资助:
    国家自然科学基金面上项目(31371048);教育部人文社科规划项目(18YJA190014);山东省“十二五”特色重点学科“发展与教育心理学”专项经费;三亚学院青年项目。

Metacognitive Monitoring and Arithmetic Knowledge Restrict the Development of Strategy Use in Arithmetic Calculation in Primary School Children: One-year Longitudinal Study

LIU Weifang1, ZHANG Jiajia2, HU Dongmei2, ZHANG Mingliang2, SI Jiwei2   

  1. 1. School of Law and Sociology, University of Sanya, Sanya 572022;
    2. School of Psychology, Shandong Normal University, Jinan 250358
  • Published:2019-08-28

摘要: 为探究元认知监测与算术知识对儿童心算策略运用能力的影响如何随个体发展而变化,采用计算机任务与纸笔测量的方法,对85名小学三、五年级儿童进行了历时一年的纵向追踪研究。研究发现:(1)两组儿童的元认知监测和算术知识均呈增长趋势,算术知识的增长速度五年级显著快于三年级,且元认知监测增长速度与算术知识增长速度显著相关;(2)两组儿童中,元认知监测与算术知识增长速度更快的个体策略执行反应时与错误率的减少速度也更快;(3)五年级儿童的算术知识在元认知监测影响策略选择发展中起着完全中介作用。

关键词: 元认知监测, 算术知识, 策略运用, 小学儿童, 追踪研究

Abstract: It is very fast for the development of a high level of math ability in primary school. So it is necessary to investigate how metacognitive monitoring and arithmetic knowledge impact the performance of strategy use in arithmetic problem solving from the longitudinal perspective. Total 85 primary school age children from two classes (third and fifth graders) took part in the present longitudinal study. Three measures on them in a whole year were administered. Results showed that (1)metacognitive monitoring showed linear growth trends in two groups. The growth of arithmetic knowledge in fifth grade was much faster than in third grade. And the growth of metacognitive monitoring can predict the growth of arithmetic knowledge significantly; (2) Both the growth of metacognitive monitoring and arithmetic knowledge can predict the growth of strategy execution adaptability in both two groups on RTs and error rates; (3) In accurate mental calculation, the effect of metacognitive monitoring on strategy selection is via the complete mediating effect of arithmetic knowledge in fifth grade.

Key words: metacognitive monitoring, arithmetic knowledge, strategy use, primary school children, longitudinal design

中图分类号: 

  • G442
Alexander, J. M., Carr, M., & Schwanenflugel, P. J. (1995). Development of metacognition in gifted children:Directions for future research. Developmental Review, 15(1), 1-37.
Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation:Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76-106). New York, NY, USA:Oxford University Press.
Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York:Psychology Press.
Chevalier, N., Martis,S. B., Curran, T., & Munakata, Y. (2015). Metacognitive processes in executive control development:The case of reactive and proactive control. Journal of Cognitive Neuroscience, 27(6), 1125-1136.
Chu, F, W., vanMarle, K., Rouder, Jeffrey.,& Geary, D. C. (2018). Children's early understanding of number predicts their later problem-solving sophistication in addition. Journal of Experimental Child Psychology, 169, 73-92.
Desoete, A., Roeyers, H.,& Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34(5), 435-449.
Duncan, T. E., Duncan, S. C., & Li, F. Z. (1998). A comparison of model-and multiple imputation-based approaches to longitudinal analyses with partial missingness. Structural Equation Modelling, 5(1), 1-21.
Dunlosky, J., & Hertzog, C. (2000). Updating knowledge about strategy effectiveness:A componential analysis of learning about strategy effectiveness from task experience.Psychology and Aging, 15(3), 462-474.
Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks, CA:Sage Publications, Inc.
Fan, X., & Konold, T. R. (2009). Latent growth curve analysis in structural equation modeling:Concepts and implementations. In T. Teo, & M. S. Khine (Eds.), Structural equation modeling:Concepts and applications in educational research (pp. 29-58). Rotterdam, Netherlands:Sense Publishers.
Fehr, T., Code, C., & Herrmann, M. (2007). Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation. Brain Research, 1172, 93-102.
Georghiades, P. (2004). From the general to the situated:Three decades of metacognition. International Journal of Science Education,26(3), 365-383.
Geurten, M, & Lemaire, P. (2017). Age-related differences in strategic monitoring during arithmetic problem solving. Acta Psychologica, 180,105-116.
Geurten, M, & Lemaire, P. (2018). Metacognition for strategy selection during arithmetic problem-solving in young and older adults. Aging Neuropsychology and Cognition,1-23
Hertzog, C. (2016). Aging and metacognitive control. In J. Dunlosky & S. K. Tauber (Eds.), Oxford handbook of metacognition, Oxford, UK:Oxford University Press.
Klein, E., Nuerk, H., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate:How different processes work together in multidigit addition. Brain and Cognition, 69(2), 369-381.
Kraemer, H. C., Yesavage, J. A., Taylor, J. L., & Kupfer, D. (2000). How can we learn about developmental processes from cross-sectional studies, or can we? American Journal of Psychiatry, 157(2), 163-171.
Lemaire, P., & Callies, S. (2009). Children's strategies in complex arithmetic. Journal of Experimental Child Psychology, 103(1), 49-65.
Lemaire, P., & Hinault, T. (2014). Age-related differences in sequential modulations of poorer-strategy effects:A study in arithmetic problem solving. Experimental Psychology, 61(4):253-262.
Lemaire, P., & Lecacheur, M. (2010). Strategy switch costs in arithmetic problem solving. Memory and Cognition, 38(3), 322-332.
Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children's executive functions and strategy selection:A study in computational estimation. Cognitive Development, 26(3), 282-294.
Lovett, M. C., & Schunn, C. D. (1999). Task representations, strategy variability and base-rate neglect. Journal of Experimental Psychology:General, 128(2), 107-130.
Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102-116. doi:10.1037/0003-066X.51.2.102
Pennequin, V., Sorel, O., Nanty, I., & Fontaine, R. (2010). Metacognition and low achievement in mathematics:The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking and Reasoning, 16(3), 198-220.
Rieskamp, J., & Otto, P. E. (2006). SSL:A theory of how people learn to select strategies. Journal of Experimental Psychology:General, 135(2), 207-236.
Rittle-Johnson, B., & Star, J. R. (2007). Do comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561-574.
Schmitt, M. C., & Sha, S. (2009). The developmental nature of metacognition and the relationship between knowledge and control over time. Journal of Research in Reading, 32(2), 254-271.
Siegler, R. S., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 33, pp. 1-42). Oxford, UK:Elsevier.
Siegler, R. S., & Booth, J. (2005). Development of numerical estimation:A review. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp.197-212). New York:Psychology Press.
Taillan, J., Ardiale, E., & Lemaire, P. (2015). Relationships between strategy switching and strategy switch costs in young and older adults:A study in arithmetic problem solving. Experimental Aging Research, 41(2), 136-156.
Tiberghien, K., Notebaert, W., De Smedt, B., & Fias, W. (2017). Reactive and proactive control in arithmetical strategy selection. Journal of Numerical Cognition, 3(3), 598-619.
Veenman, M., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning:Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3-14.
Vígh-Kiss, E. R. (2013). Adaptive strategy use in mathematics education. In J. T. Karlovitz (Eds.), Questions and perspectives in education (pp. 342-352). Komárno:International Research Institute.
陈英和, 韩瑽瑽. (2012). 儿童青少年元认知的发展特点及作用的心理机制. 心理科学, 35(3), 537-543.
刘伟方, 华晓腾, 封洪敏, 胡冬梅, 司继伟. (2014). 算术策略运用能力的年龄差异:元认知监测与算术知识的作用. 心理发展与教育, 30(3), 234-243.
刘伟方, 司继伟, 王玉璇. (2011). 认知策略选择的元认知因素. 心理科学进展, 19(9), 1328-1338.
吴灵丹, 刘电芝. (2006). 儿童计算的元认知监测及其对策略选择的影响. 心理科学, 29(2), 354-357.
[1] 郑显亮, 陈慧萍, 王雪, 鲍振宙. 青少年网络利他行为的发展趋势及社会阶层的影响:一项追踪研究[J]. 心理发展与教育, 2023, 39(3): 333-341.
[2] 张玉平, 董琼, 宋爽, 舒华. 小学低年级儿童的阅读发展轨迹:早期语言认知技能的预测作用[J]. 心理发展与教育, 2023, 39(2): 210-218.
[3] 薛笑然, 黄碧娟, 李红霞, 赵晓萌, 司继伟. 小学儿童数学态度与数学成就的纵向联系:学业拖延和数学元认知的作用[J]. 心理发展与教育, 2022, 38(4): 520-529.
[4] 张潮, 程亚华, 李利平, 范雨婷, 伍新春. 汉语儿童词语结构意识在阅读理解中的预测作用[J]. 心理发展与教育, 2022, 38(2): 236-243.
[5] 周婷娜, 李宜逊, 李虹, 徐钟庚, 张锋, 程亚华. 汉语儿童口语流畅性与阅读理解的关系:一项三年追踪研究[J]. 心理发展与教育, 2021, 37(5): 691-700.
[6] 吴鹏, 张琪, 王杨春子. 父母教养方式与初中生网络受欺负行为的关系:一项追踪研究[J]. 心理发展与教育, 2021, 37(5): 719-726.
[7] 慕德芳, 陈英和. 小学高年级学生元认知监测对认知操作输出的影响:执行功能的调节作用[J]. 心理发展与教育, 2021, 37(3): 305-312.
[8] 陈子循, 冯映雪, 宋文莉, 刘霞. 亲子分离与青少年同伴侵害和抑郁的关系:一项追踪研究[J]. 心理发展与教育, 2021, 37(3): 429-438.
[9] 韩瑽瑽, 陈英和, 于晓, 邓之君, 刘静, 侯江文, 林燕燕. 表面相似性对数量关系和相对大小关系理解的影响[J]. 心理发展与教育, 2020, 36(3): 257-264.
[10] 郑巧, 耿丽娜, 骆方, 李凌艳. 初中生学生投入的发展特点及其与同伴欺负的关系:一项三年追踪研究[J]. 心理发展与教育, 2020, 36(2): 157-167.
[11] 王振宏, 彭源, 赵一萌. 父母婚姻质量与儿童内化问题:父母情绪表达的中介作用与儿童迷走神经活动的调节作用[J]. 心理发展与教育, 2020, 36(1): 121-128.
[12] 田媛, 宋友志, 周宗奎, 黄淳, 赵一倩. 青少年公正世界信念的发展轨迹及其影响因素:一项多水平分析[J]. 心理发展与教育, 2019, 35(2): 146-156.
[13] 方铖豪, 程亚华, 伍新春. 小学低年级儿童汉语语素意识、口语词汇知识对阅读能力的影响:一项追踪研究[J]. 心理发展与教育, 2019, 35(1): 57-67.
[14] 程亚华, 伍新春. 小学一年级阅读流畅性对二、三年级阅读理解的预测[J]. 心理发展与教育, 2018, 34(3): 314-321.
[15] 苏志强, 王钢, 刘传星, 张大均. 童年中晚期抑郁的发展及其与问题行为的并发:一项两年追踪研究[J]. 心理发展与教育, 2018, 34(2): 200-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!