Psychological Development and Education ›› 2015, Vol. 31 ›› Issue (3): 350-359.doi: 10.16187/j.cnki.issn1001-4918.2015.03.13

Previous Articles     Next Articles

Identifying Psychological or Behavioral Problems of College Students: Based on Latent Profile Analysis

SU Binyuan1, ZHANG Jieting2, YU Chengfu2, ZHANG Wei2   

  1. 1. Psychological Counseling & Research Center, South China Normal University, Guangzhou, 510631;
    2. School of Psychology/Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631;
    3. Shenzhen University, Shenzhen, 518060
  • Online:2015-05-15 Published:2015-05-15

Abstract: To explore the applicability of latent profile analysis (LPA) in detecting psychological or behavioral problems, a total of 12718 college students were tested for psychological health. The psychological status of the 644 students was evaluated by psychologists, counselors and class supervisors. Using evaluation results and the 90 Symptom checklist (SCL90) positive detection rate as the "golden standard" for diagnostic accuracy, sensitivity and specificity were compared between LPA and the traditional demarcation method. The results showed that: (1) Student's psychological and behavioral problems can be divided into three sub-groups: high risk group (9.86%), mental confusion group (19.15%) and healthy group (70.99%). (2) High risk groups were characterized by prominent mental symptoms (Z≥2.6SD). The positive symptom of mental health risk in high risk group is 61.21%, which is far above that of mental confusion group (38.28%) and mental health group (8.36%). (3) LPA improved sensitivity by 8.93%-35.26% and showed better diagnostic accuracy comparing with the traditional demarcation method.

Key words: latent profile analysis (LPA), university personality inventory (UPI), psychological or behavioral problems, college students

CLC Number: 

  • B844
Antonius J., Van R.J., & Tim M.S.(2010). Online video game addiction: identification of addicted adolescent gamers. Addiction, 106(1), 205-212.
Bertrand, P., Bénichou, J., Grenier, P., & Chastang, C. (2005). Hui and Walter's latent-class reference-free approach may be more useful in assessing agreement than diagnostic performance. Journal of Clinical Epidemiology, 58(1), 21-26.
Benjamin, D.K.,DeLong,E., & Steinbach,W.J.(2004) Latent Class Analysis: An Illustrative Application for Education in the Assessment of Resident Otoscopic Skills. Ambulatory Pediatrics, 4(1),13-17.
Fossati, A., Krueger, R. F, Markon, K. E., Borroni, S.,& Maffei, C.(2013). Reliability and Validity of the Personality Inventory for DSM-5 (PID-5): Predicting DSM-IV Personality Disorders and Psychopathy in Community-Dwelling Italian Adults. Assessment, 20(6),689-708.
Kay, N., Li, K., Nokkaew, N., & Park,B. (2009). Hopelessness and suicidal behavior among Chinese, Thai and Korean college students and predictive effects of the World Health Organization 's WHOQOL-BREF. International Electronic Journal of Health Education, 12(1), 16-32.
Maarten, V. S. M., Naaktgeboren, A., Reitsma, J. B., Moons, K. G. M., & Groot, J. A. H. (2013). Latent Class Models in Diagnostic Studies When There is No Reference Standard-A Systematic Review. American Journal of Epidemiology, 179(4), 423-431.
Muthén, B. (1978) Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560
Muthén, B. (1989) Dichotomous factor analysis of symptom data. Sociological Methods & Research, 18, 19-65
Muthén, B.(1998). Dichotomous factor analysis of symptom data. Sociological Methods & Research, 18(1), 19-65.
Muthén, L.K., Muthén, BO. (2012). Mplus: Statistical analysis with latent variables, User's guide, , 1(1), 159-257.
McDonald, R. P. (2002). Principles and practice in reporting structural equation analysis. Psychological Methods, 7(2), 64-82.
Parry, C. D. H., & McArdle, J. J. (1991) An applied comparison of methods for least- squares factor analysis of dichotomous variables. Applied Psychological Measurement, 15, 35-46. DOI: 10.1177/014662169101500105
Ran T., Xiuqin H., Jinan W., Huimin Z., Ying, Z., & Mengchen L.(2010). Proposed diagnostic Criteria for internet addiction. Addiction, 105, 556-564.
Szatmari, P., Volkmar, F., & Walter,S.(1995). Evaluation of diagnostic criteria forautism using latent class models. Journal of the American Academyof Child and Adolescent Psychiatry, 34(2), 216-222.
Yoshitake, M.(1995). UPIからみた新入生の心の健康状態 : 他大学との比較をとおして [A study on mental health of freshmen in Toyo Women's College by UPI] . 東洋女子短期大学紀要,27,33-42.
Yoshitake, M.(1996). UPIの有用性について [A study on validity of UPI] . 東洋女子短期大学紀要,28,87-103.
曹尚, 罗鹏飞. (2012). 多样本潜在类别模型在居民健康素养中的应用.中国卫生统计,29(1), 427-420.
郭田生, 骆晓林, 李新纯, 姚美艳, 张喜艳, 周晓旋等. (2014). 心理疾病专家诊断系统的临床信度和效度评价. 中国临床心理学杂志,22(3), 96-101.
黄艳苹, 李玲. (2012). 高校心理普查危机因子检测系统的构建.教育理论与实践,32(1),37-39.
李雪燕, 辛涛. (2007). 特质焦虑的潜类别分析. 北京师范大学学报(自然科学版),42(6),610-614.
李丹玲. (2013). 基于灵敏度和特异度任意赋权的评价诊断试验的统计推断方法. 南方医科大学博士学位论文.
李献斌,李啊特.(2004). 农业院校本科新生心理健康研究.健康心理学杂志, 12,68-171.
李晶,王学春,李波, 刘根义, 宋煜炜.(2003).UPI与SCL90在新生中应用效果分析, 中国校医, 17(1),41-43.
刘沛, 孙金芳. (2008). 无金标准条件下患病率与阳性检出率、灵敏度、特异度的关系.中国卫生统计, 25(3),233-236.
裴磊磊. (2009). 抑郁患者单核苷酸从态性(SNPs)分布特征的潜在类别分析. 山西医科大学硕士学位论文.
邱皓政. (2008).潜在类别模型的原理与技术. 北京:教育科学出版社.
吴鹏, 刘华山, 谢亚静, 王卉. (2014). 攻击性初中生的类别:一个潜在类别模型的应用.心理与行为研究,12(1),58-62.
王建中.(1995).UPI与SCL90的比较研究, 中国心理卫生杂志,9(3),117.
王建中.(1999).大学生心理问题评定及其筛查研究, 迈向21世纪的高校心理健康教育-第六届全国大学生心理咨询学术会议优秀论文集, 南京:中国心理卫生协会, 570-580.
谢员, 江光荣. (2013). 青少年健康相关危险行为的类型及与心理健康的关系:基于潜在剖面分析的结果.中国临床心理学杂志, 4(1), 650-653.
杨金辉, 汪耀, 程红梅, 罗艳, 张道立, 程敏. (2008). SCL90和EPQ及UPI 3个量表关系研究.中国校医,3(1),249-255.
余莉. 蔡玲. (2007). 大学生人格问卷国内外应用研究的综述.职业圈,1(1), 158-159.
郑林科, 王建利. (2005). 万名大学生心理普查检测与心理障碍因子分析--以年西安石油大学全校学生心理普查结果为例.西安石油大学学报(社会科学版),16(1), 91-96.
赵丽, 张瑛. (2013). 潜在类别模型在健康行为研究中的应用. 中华疾病控制杂志,7(1),625-629.
张明亮,朱晓文.(2007).1087例大学新生UP1人格健康评价效应.现代生物医学进展,7(7),1093-1095.
张洁婷, 焦璨, 张敏强. (2009). 潜在类别分析技术在心理学研究中的应用.心理科学进展,18(12), 1991-1998.
[1] FAN Xianglin, CUI Yingjin. The Relationship between Objectified Body Consciousness and Restrained Eating Behavior among Female College Students: The Mediating Roles of Fear of Negative Appearance Evaluation and Sociocultural Pressure [J]. Psychological Development and Education, 2024, 40(1): 122-131.
[2] ZHANG Huiru, ZHANG Weida, FU Wangqian, DENG Min, PENG Suhao, LI Yu. The Influence of Loneliness on Creative Inclination: Mediating Role of Boredom and Anxiety [J]. Psychological Development and Education, 2024, 40(1): 132-141.
[3] LIU Sihan, WU Xinchun, WANG Xinyi. Latent Profiles of Parenting Styles and Their Associations with Academic Engagement and Anxiety Symptoms in Adolescents [J]. Psychological Development and Education, 2023, 39(5): 673-682.
[4] HE Anming, ZHANG Yurui, HUI Qiuping. The Relationship between Gratitude and Social Well-being in College Students: The Mediating Role of Phubbing and the Moderating Role of Negative Life Events [J]. Psychological Development and Education, 2023, 39(4): 505-512.
[5] ZENG Zihao, PENG Liyi, ZHAN Lin, LIU Shuangjin, OUYANG Xiaoyou, DING Daoqun, LI Zhihua, HU Yiqiu, FANG Xiaoyi. The Effect of Childhood Maltreatment on College Students’ Depressive Symptoms: The Mediating Role of Subjective Well-being and the Moderation Role of Gene [J]. Psychological Development and Education, 2023, 39(2): 276-285.
[6] CAO Ruilin, MEI Songli, LIANG Leilei, LI Chuanen, ZHANG Ying. Relationship between Gratitude and Internet Addiction among College Students: The Mediating Role of Core Self-evaluation and Meaning in Life [J]. Psychological Development and Education, 2023, 39(2): 286-294.
[7] CHEN Zixun, LI Jinwen, WANG Yumeng, LIU Xia. The Relationship between Cumulative Environmental Risk and Non-suicidal Self-injury among College Students: The Effects of Emotion Regulation Strategies [J]. Psychological Development and Education, 2023, 39(1): 109-120.
[8] ZHENG Shuang, LIU Hongrui, LI Jing, XI Yu, YAO Meilin. Proactive Personality and College Students’ Entrepreneurial Preparation Behavior: The Mediating Effect of Entrepreneurial Intention and Moderating Role of Entrepreneurial Social Support [J]. Psychological Development and Education, 2022, 38(6): 813-821.
[9] WANG Hao, YU Guoliang. The Relation between Attachment Anxiety and Depression among College Students: The Sequential Mediation Effects of Relational Aggression and Relationship Quality in Dating Relationships [J]. Psychological Development and Education, 2022, 38(6): 879-885.
[10] ZHU Lijun, YANG Qiang, YE Baojuan, CHEN Zhinan, ZHANG Li. Connectedness to Nature on College Students’ Depression: A Moderated Mediation Model [J]. Psychological Development and Education, 2022, 38(6): 886-893.
[11] ZHANG Baosheng, LI Xin, LI Xinye, ZHANG Qingpu. Research on the Influence Mechanism of Subjective Norm on University Students' Volunteer Engagement: A Chain Double-mediation with Adjustment Model [J]. Psychological Development and Education, 2022, 38(5): 658-666.
[12] LI Song, CHEN Xu, RAN Guangming, ZHANG Qi. Passive Social Network Site Use and Social Anxiety: The Influence of Rumination and Self-construals [J]. Psychological Development and Education, 2022, 38(5): 720-728.
[13] CHEN Jianwen, LIU Yan, TAN Qianbao. The Relationship of Cumulative Ecological Risk and Higher Vocational College Students’ Learning Burnout: The Mediation Effect of Negative Self-schema and Internet Addiction [J]. Psychological Development and Education, 2022, 38(4): 576-583.
[14] ZHANG Chunyang, XU Wei. Childhood Trauma and Negative Emotions among College Students with Left-behind Experience: The Moderation of Resilience [J]. Psychological Development and Education, 2022, 38(4): 584-591.
[15] XIE Yunzi, WU Jixia, WANG Shicheng, YANG Ze. The Effect of Childhood Emotional Neglect on College Students’ Depression: The Chain Mediating Effect of Perceived Control and Regulatory Emotional Self-efficacy [J]. Psychological Development and Education, 2022, 38(3): 407-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!