心理发展与教育 ›› 2022, Vol. 38 ›› Issue (6): 830-838.doi: 10.16187/j.cnki.issn1001-4918.2022.06.09

• 教与学心理 • 上一篇    下一篇

生成性绘图与合作对高中生科学知识学习的影响

张洋, 张婉莹, 王燕青, 赵婷婷, 王福兴   

  1. 华中师范大学心理学院, 武汉 430079
  • 发布日期:2022-11-29
  • 通讯作者: 王福兴 E-mail:fxwang@ccnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31771236)。

The Effects of Learner-generated Drawing and Cooperative Learning on Scientific Knowledge Learning of High School Students

ZHANG Yang, ZHANG Wanying, WANG Yanqing, ZHAO Tingting, WANG Fuxing   

  1. School of Psychology, Central China Normal University, Wuhan 430079
  • Published:2022-11-29

摘要: 生成性绘图是学习心理学中一种有效的学习策略,能够促进学习者对科学文本知识的表征和深层理解。目前关于学习者生成性绘图的研究主要集中在个体学习领域,很少有研究探讨合作学习中生成性绘图的作用。本研究将合作学习与学习者生成性绘图相结合,探讨生成性绘图和合作对高中生科学知识学习的影响。实验1采用单因素(绘图、阅读)被试间设计来验证生成性绘图对学习效果以及认知负荷等主观体验的影响;实验2采用2(合作、个体)×2(绘图、阅读)被试间设计来探讨合作与生成性绘图对学习效果和学习者主观体验的影响。研究表明,生成性绘图和合作都可以有效促进高中生科学知识的学习效果;生成性绘图能够降低学习者的内在认知负荷;合作能够降低学习者的内在和外在认知负荷,提高学习者的相关认知负荷和学习兴趣。

关键词: 生成性绘图, 合作学习, 科学知识, 阅读, 高中生

Abstract: Learner-generated drawing is an effective learning strategy that can promote learners’ comprehending of science texts. Most of the research about learner-generated drawing focused on individual learning settings, and few studies explored learner-generated drawing in collaborative settings. This study combines cooperative learning with learner-generated drawing to explore the impact of generative drawing and cooperation on high school students’ scientific knowledge learning. In Experiment 1, a single factor (drawing vs. reading) between-subjects design was employed to investigate whether learner-generated drawing can facilitate learning and the influence on subjective experience such as cognitive load and interest. In Experiment 2, a 2 (drawing vs. reading) × 2 (individual learning vs. collaborative learning) between-subjects design was employed to investigate the effects of generative drawing and cooperation on scientific knowledge learning of high school students. The results show that both learner-generated drawing and cooperation can effectively promote the learning effect of high school students. Learner-generated drawing can reduce learners’ internal cognitive load. In addition, cooperative learning can reduce learners’ internal cognitive load and external cognitive load, and improve learners’ relevant cognitive load and learning interest.

Key words: learner-generated drawing, cooperative learning, scientific knowledge, reading, high school students

中图分类号: 

  • G442
Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive Research: Principles and Implications, 1 (1), 27.http://doi.org/10.1186/s41235-016-0031-6
Cai, H., & Gu, X. (2019). Supporting collaborative learning using a diagram-based visible thinking tool based on cognitive load theory. British Journal of Educational Technology, 50 (5), 2329-2345.
Cheng, L., & Beal, C. R. (2020). Effects of student-generated drawing and imagination on science text reading in a computer-based learning environment. Educational Technology Research and Development, 68 (1), 225-247.
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49 (4), 219-243.
Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25 (2), 315-324.
Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9 (4), 343-363.
Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. New York: Cambridge University Press.
Fiorella, L., & Mayer, R. E.(2016). Eight ways to promote generative learning. Educational Psychology Review, 28, 717-741.
Fiorella, L., & Zhang, Q. (2018). Drawing boundary conditions for learning by drawing. Educational Psychology Review, 30 (3), 1115-1137.
Gijlers, H., & de Jong, T. (2013). Using concept maps to facilitate collaborative simulation-based inquiry learning. Journal of the Learning Sciences, 22 (3), 340-374.
Goos, M. (2004). Learning mathematics in a classroom community of inquiry. Journal for Research in Mathematics Education, 35 (4), 258-291.
Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89 (1), 92-102.
Johnson, D. W. (1981). Effects of cooperative, competitive, and individualistic goal structures on achievement: A meta-analysis. Psychological Bulletin, 89 (1), 47-62.
Johnson, D. W. & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38 (5), 365-379.
Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning: United brains for complex tasks. Educational Psychology Review, 21 (1), 31-42.
Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: Effects of drawing and mentally imagining text content. Computers in Human Behavior, 25 (2), 284-289.
Lin, L., Lee, C. H., Kalyuga, S., Wang, Y., Guan, S., & Wu, H. (2017). The effect of learner-generated drawing and imagination in comprehending a science text. The Journal of Experimental Education, 85 (1), 142-154.
Mason, L., Lowe, R., & Tornatora, M. C. (2013). Self-generated drawings for supporting comprehension of a complex animation. Contemporary Educational Psychology, 38 (3), 211-224.
Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43-71). New York: Cambridge University Press.
Mayer, R. E. (2020). Multimedia learning (3rd ed.). New York: Cambridge University Press.
Roseth, C. J., Johnson, D. W., & Johnson, R. T. (2008). Promoting early adolescents’ achievement and peer relationships: The effects of cooperative, competitive, and individualistic goal structures. Psychological Bulletin, 134 (2), 223-246.
Salomon, G. (1984). Television is “easy” and print is “tough”: The differential investment of mental effort in learning as a function of perceptions and attributes. Journal of Educational Psychology, 78, 647-658.
Schmeck, A., Mayer, R. E., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: Testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39 (4), 275-286.
Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010). Drawing as a generative activity and drawing as a prognostic activity. Journal of Educational Psychology, 102 (4), 872-879.
Schwamborn, A., Thillmann, H., Opfermann, M., & Leutner, D. (2011). Cognitive load and instructionally supported learning with provided and learner-generated visualizations. Computers in Human Behavior, 27 (1), 89-93.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12 (2), 257-285.
Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93 (1), 129-140.
Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31 (2), 142-166.
Van Meter, P., & Firetto, C. M. (2013). Cognitive model of drawing construction: Learning through the construction of drawings. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Current perspectives on cognition, learning, and instruction. Learning through visual displays (pp. 247-280). IAP Information Age Publishing.
Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17 (4), 285-325.
Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching,48 (10), 1177-1198.
龚少英, 上官晨雨, 翟奎虎, 郭雅薇. (2017). 情绪设计对多媒体学习的影响. 心理学报, 49 (6), 771-782.
王燕青, 王福兴, 谢和平, 陈佳雪, 李文静, 胡祥恩. (2019). 一图抵千言:多媒体学习中的自我生成绘图策略. 心理科学进展, 27 (4), 623-635.
王玉鑫, 谢和平, 王福兴, 安婧, 郝艳斌. (2016). 多媒体学习的图文整合:空间邻近效应的元分析. 心理发展与教育, 32 (5), 565-578.
[1] 史梦梦, 任桂琴, 孙军红, 张鑫星. 词汇类型和阅读水平对小学一年级儿童阅读理解监控的影响[J]. 心理发展与教育, 2024, 40(2): 207-214.
[2] 高斌, 张丹丹, 朱根, 蔡艳香, 郭羽希. 高中生主动性人格与网络学习投入:网络学习自我效能和学业期望的序列中介作用[J]. 心理发展与教育, 2024, 40(2): 224-230.
[3] 冷欣怡, 苏萌萌, 李文玲, 杨秀杰, 邢爱玲, 张湘琳, 舒华. 家庭环境与农村儿童早期语言发展的关系[J]. 心理发展与教育, 2024, 40(1): 8-18.
[4] 王敬欣, 赵赛男, 徐倩倩. 字间空格与词频对青年人和老年人阅读的影响:眼动研究[J]. 心理发展与教育, 2023, 39(6): 781-787.
[5] 杨宝琰, 柳玉姣. 元刻板印象威胁对县城农村高中生学校归属感的影响:身份认同整合和自我肯定的作用机制[J]. 心理发展与教育, 2023, 39(5): 645-653.
[6] 王淏蘭, 陈红君, 伍新春, 赵英, 孙鹏. 阅读模式对汉语儿童阅读理解的影响:有中介的调节模型[J]. 心理发展与教育, 2023, 39(3): 369-378.
[7] 张玉平, 董琼, 宋爽, 舒华. 小学低年级儿童的阅读发展轨迹:早期语言认知技能的预测作用[J]. 心理发展与教育, 2023, 39(2): 210-218.
[8] 郑婉婷, 王薇, 徐利敏, 李莫涵, 徐芝琦, 李永鑫, 赵静, 梁紫嫣, 刘靖佳. 5~7岁自闭症谱系障碍儿童环境文字阅读的特点[J]. 心理发展与教育, 2022, 38(6): 822-829.
[9] 史梦梦, 任桂琴, 吕潇潇, 张巧, 李海娇. 儿童理解监控的即时加工过程[J]. 心理发展与教育, 2022, 38(4): 592-599.
[10] 张小敏, 陈欣, 务凯, 赵国祥. 学校联结和学业能力对高中生自尊的影响:一个多层线性模型[J]. 心理发展与教育, 2022, 38(3): 358-365.
[11] 张潮, 程亚华, 李利平, 范雨婷, 伍新春. 汉语儿童词语结构意识在阅读理解中的预测作用[J]. 心理发展与教育, 2022, 38(2): 236-243.
[12] 徐鑫锫, 莫玲菲, 刘明, 邓赐平. 高一学生成就目标特征模式及学业适应:基于潜在剖面分析[J]. 心理发展与教育, 2022, 38(1): 81-89.
[13] 周婷娜, 李宜逊, 李虹, 徐钟庚, 张锋, 程亚华. 汉语儿童口语流畅性与阅读理解的关系:一项三年追踪研究[J]. 心理发展与教育, 2021, 37(5): 691-700.
[14] 罗海风, 刘坚, 周达. 家长参与在家庭社会经济地位和高中生学习品质之间的中介作用——师生关系的调节作用[J]. 心理发展与教育, 2021, 37(2): 199-210.
[15] 孟红霞, 白学军, 谭珂, 苏娟. 发展性阅读障碍的视觉拥挤效应[J]. 心理发展与教育, 2020, 36(6): 762-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!