摘要: 手指是儿童在习得数字符号之前最常使用的表征数量的工具,大量研究都表明手指在数字认知中具有促进作用。但是,目前仍不清楚手指在数字认知中的作用机制。综述从手指感知、手指运动以及手指数量表征三个方面总结了手指在数字认知中所起的作用。手指感知可能通过影响儿童的数量表征能力间接地影响其它数学能力;与表征量有关的手指运动可能促进了数量大小的加工。关于手指数量表征在数字认知中的作用存在两种有争议的观点:一种认为手指数量表征促进了儿童由非符号数量表征向符号数量表征的转化;另一种认为手指数量表征可能是一种数量语义表征方式。未来应该在发展、作用机制、性别差异等方向继续开展研究,进一步探讨手指在数字认知中所起的作用。
中图分类号:
Almeida, J., Mahon, B. Z., Nakayama, K., & Caramazza, A. (2008). Unconscious processing dissociates along categorical lines. Proceedings of the National Academy of Sciences, 105(39), 15214-15218. Anderson, M. L., & Penner-Wilger, M. (2007). Do redeployed finger representations underlie math ability. In Proceedings of the 29th Annual Cognitive Science Society (p. 1703). Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction.Neuroreport, 15(18), 2773-2777. Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage, 62(3), 1520-1528. Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563-576. Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 46-53. Badets, A., Bouquet, C. A., Ric, F., & Pesenti, M. (2012). Number generation bias after action observation. Experimental brain research, 221(1), 43-49. Badets, A., Pesenti, M., & Olivier, E. (2010). Response-effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63(1), 16-22. Bender, A., & Beller, S. (2011). Fingers as a Tool for Counting-Naturally Fixed or Culturally Flexible? Frontiers in psychology, 2, 256. Butterworth, B. (1999). What counts: How every brain is hardwired for math. Chochon, F., Cohen, L., Van De Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617-630. Costa, A. J., Silva, J. B. L., Chagas, P. P., Krinzinger, H., Lonneman, J., Willmes, K., et al. (2011). A hand full of numbers: a role for offloading in arithmetics learning? Frontiers in psychology, 2, 368. Crollen, V., Seron, X., & Nol, M. P. (2011). Is finger-counting necessary for the development of arithmetic abilities?Frontiers in psychology, 2, 242. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506. Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 27-39. Di Luca, S., & Pesenti, M. (2011). Finger numeral representations: more than just another symbolic code. Frontiers in psychology, 2, 272. Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59(9), 1648-1663. Di Luca, S., Lefevre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations.Cognition,117(1), 95-100. Domahs, F., Klein, E., Moeller, K., Nuerk, H. C., Yoon, B. C., & Willmes, K. (2011). Multimodal semantic quantity representations: further evidence from Korean sign language.Frontiers in psychology, 2, 389. Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children's mental calculation. Cortex, 44(4), 359-367. Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. C. (2010). Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251-266. Gallese, V., & Lakoff, G. (2005). The brains concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive neuropsychology, 22(3-4), 455-479. Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: local diagnostic value. Archives of Neurology and Psychiatry, 44(2), 398. Gracia-Bafalluy, M., & Nol, M. P. (2008). Does finger training increase young children's numerical performance? Cortex, 44(4), 368-375. Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307. Imbo, I., Vandierendonck, A., & Fias, W. (2011). Passive hand movements disrupt adults' counting strategies. Frontiers in psychology, 2, 201. Iversen, W., Nuerk, H. C., & Willmes, K. (2004). Do signers think differently? The processing of number parity in deaf participants. Cortex, 40(1), 176-178. Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: when do fingers help? Developmental Science, 11(5), 662-668. Kadosh, R. C., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32(3-4), 313-328. Klein, E., Moeller, K., Willmes, K., Nuerk, H. C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in psychology, 2, 197. Krinzinger, H., Koten, J. W., Horoufchin, H., Kohn, N., Arndt, D., Sahr, K., et al. (2011). The role of finger representations and saccades for number processing: an fMRI study in children.Frontiers in psychology, 2, 373. Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400. Michaux, N., Masson, N., Pesenti, M., & Andres, M. (2013). Selective interference of finger movements on basic addition and subtraction problem solving. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 60(3), 197-205. Moeller, K., Martignon, L., Wessolowski, S., Engel, J., & Nuerk, H. C. (2011). Effects of finger counting on numerical development-the opposing views of neurocognition and mathematics education. Frontiers in psychology, 2, 328. Nol, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology, 11(5), 413-430. Penner-Wilger, M., & Anderson, M. L. (2008, July). An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In Proceedings of the 30th annual meeting of the Cognitive Science Society, Austin, TX (pp. 1647-52). Penner-Wilger, M., Fast, L., LeFevre, J., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., et al. (2007). The foundations of numeracy: Subitizing, finger gnosia, and fine-motor ability. In Proceedings of the 29th Annual Cognitive Science Society (pp. 1385-1390). Penner-Wilger, M., Fast, L., LeFevre, J., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., et al. (2009). Subitizing, finger gnosis, and the representation of number. Proceedings of the 31st Annual Cognitive Science Society, 520-525. Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12(3), 461-479. Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983-993. Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in human neuroscience, 5(147), 1-10. Reeve, R., & Humberstone, J. (2011). Five- to 7-year-olds' finger gnosia and calculation abilities. Frontiers in Psychology, 2, 359. Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609-1624. Soylu, F., & Newman, S. D. (2011). Is Arithmetic Embodied? Differential Interference of Sequential Finger Tapping on Addition during a Dual Task Paradigm. 33th Annual Cognitive Science Society, Boston, MA. Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation.Brain, 123(11), 2240-2255. Walsh, V. (2003). A theory of magnitude: Common cortical matrics of time, space and quantity. Trends in cognitive sciences, 7(11), 483-488. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation.Neuroimage, 13(2), 314-327. 叶浩生. (2010). 具身认知: 认知心理学的新取向. 心理科学进展, 18(5), 705-710. |
[1] | 官冬晓, 艾继如, 黄碧娟, 崔爽, 司继伟. 数学焦虑影响儿童的数量表征:认知抑制的调节作用[J]. 心理发展与教育, 2020, 36(1): 10-18. |
[2] | 高瑞彦, 牛美心, 杨涛, 周新林. 4~8年级学生分数数量表征的准确性及形式[J]. 心理发展与教育, 2018, 34(4): 443-452. |
[3] | 张帆, 赖颖慧, 陈英和. 儿童数字线表征的发展——心理长度的影响[J]. 心理发展与教育, 2015, 31(2): 149-156. |
[4] | 陈英和. 儿童数量表征与数概念的发展特点及机制[J]. 心理发展与教育, 2015, 31(1): 21-28. |
[5] | 张丽, 卢彩芳, 杨新荣. 3~6年级儿童整数数量表征与分数数量表征的关系[J]. 心理发展与教育, 2014, 30(1): 1-8. |
[6] | 晏倩, 熊哲宏. 国外人类先天“数字模块”的研究现状及展望[J]. 心理发展与教育, 2006, 22(4): 115-118. |
|