心理发展与教育 ›› 2021, Vol. 37 ›› Issue (5): 619-627.doi: 10.16187/j.cnki.issn1001-4918.2021.05.02
陈丽君, 刘丽敏, 林岳阳, 张玲燕
CHEN Lijun, LIU Limin, LIN Yueyang, ZHANG Lingyan
摘要: 基于单探测变化觉察和双任务范式,采用项目数量(3)×呈现时间(2)×文字线索(2)混合实验设计,对沉浸式虚拟学习环境图形加工特征和认知负荷进行探讨,以任务绩效法与主观测量法评定认知负荷。44名大学生的实验结果显示:(1)项目数量对虚拟空间图形识记主任务绩效和主观认知负荷有显著影响,项目数量越多,主任务正确率越低,反应时越长,主观评定认知负荷越高,同时加工刺激数量以4个为宜;(2)呈现时间对虚拟空间图形识记次任务绩效有显著影响,呈现时间越长,次任务正确率越高,呈现时间超过0.5s有利于次任务加工;(3)文字线索对虚拟图形识记认知负荷有显著影响,重复性文字线索会增加认知负荷。结果表明,在沉浸式虚拟环境中,图形加工的认知负荷特点与平面和三维图形基本一致,项目数量多、呈现时间短以及有重复性文字线索时,认知负荷更高;任务绩效和主观测量评定指标在反映认知负荷强度上不完全一致。
中图分类号:
Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cayé-Thomasen, P., & Sørensen, M. S. (2016). Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation. Laryngoscope, 126(2), E74-E79.http://doi.org/10.1002/larg.25449 Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology General, 133(1), 83-100. Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and Cognitive lood in working memery Joumal of Exterimental Psychology. Learning, Memery and Cognition, 33(3),570-585. Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning & Instruction, 3(1), 1-21. Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53-61. Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49(2), 109-119. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., …Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20-26. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition & Instruction, 8(4), 293-332. Chen, Y.-L. (2016). The effects of virtual reality learning environment on student cognitive and linguistic development. Asia-Pacific Education Research, 25(4), 637-646. Coyle, H., Traynor, V., & Solowij, N. (2015). Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline:Systematic review of the literature. The American Journal of Geriatric Psychiatry, 23(4), 335-359. Dan, A., & Reiner, M. (2017). Eeg-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. International Journal of Psychophysiology, 122 (12), 75-84. Dan, A., & Reiner, M. (2018). Reduced mental load in learning a motor visual task with virtual 3D method. Journal of Computer Assisted Learning,34(1), 84-93. Deleeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load:Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223-234. Harris, D. J., Buckingham, G., Wilson. M. R., & Vine, S. J. (2019). Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action. Experimental Brain Research, 237(11), 2761-2766. Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning:United brains for complex tasks. Educational Psychology Review, 21(1), 31-42. Liu, M., & Curet, M. (2015). A review of training research and virtual reality simulators for the da vinci surgical system. Teaching & Learning in Medicine, 27(1), 12-26. Kalyuga, S., Chandler, P., & Sweller, J. (2004). When redundant on-screen text in multimedia technical instruction can interfere with learning. Human Factors:The Journal of the Human Factors and Ergonomics Society, 46(3), 567-581. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning & Instruction, 12(1), 107-119. Paas, F., & Gog, T. V. (2006). Optimising worked example instruction:different ways to increase germane load. Learning & Instruction, 16(2), 87-91. Paas, F., & Van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills:A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-133. Pantelidis, V. S. (2015). Virtual reality and engineering education. Computer Applications in Engineering Education, 5(1), 3-12. Phillips, W. A., & Christie, D. F. (1977). Interference with visualization. The Quarterly Journal of Experimental Psychology, 29(4), 637-650. Reisoǧlu,I., Topu, B., YIlmaz, R., Karakuş YIlmaz, T., & Goktaş, Y.(2017). 3D virtual learning environments in education:A meta-review. Asia Pacific Educational Review, 18(1),81-100. Sweller, J. (1988). Cognitive load during problem solving:effects on learning. Cognitive Science, 12(2), 257-285. Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4(4), 295-312. Tuovinen, J. E., & Paas, F. (2004). Exploring multidimensional approaches to the efficiency of instructional conditions. Instructional Science, 32(1-2), 133-152. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning:recent developments and future directions. Educational Psychology Review, 17(2), 147-177. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology:Human Perception and Performance, 27(1), 92-114. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology:Human Perception and Performance, 32(6), 1436-1451. 丁道群, 罗扬眉. (2009). 认知风格和信息呈现方式对学习者认知负荷的影响. 心理学探新, 29(3), 37-40. 丁楠, 汪亚珉. (2017). 虚拟现实在教育中的应用:优势与挑战. 现代教育技术, 27(2), 19-25. 高贺明, 李富洪, 张奇. (2015). 定向遗忘的三阶段加工:注意退出、注意抑制与累积复述. 第十八届全国心理学学术会议, 355-356. 高媛, 黄真真, 李冀红, 黄荣怀. (2017). 智慧学习环境中的认知负荷问题. 开放教育研究, 23(1), 56-64. 李金波. (2009). 网络学习环境中影响学习者认知负荷的因素. 电化教育研究, 30(9), 37-41. 李金波,许百华. (2009). 人机交互过程中认知负荷的综合测评方法. 心理学报, 41(1), 35-43. 李金波, 许百华, 田学红. (2010). 人机交互中认知负荷变化预测模型的构建. 心理学报, 42(5), 559-568. 刘畅, 张璐. (2015). 时间限制和搜索任务类型对搜索体验的影响分析. 现代图书情报技术, 31(9), 1-8. 孙崇勇. (2012). 心理负荷测量方法的现状与发展趋势. 人类工效学, 18(2), 88-92. 孙崇勇, 刘电芝. (2013). 认知负荷主观评价量表比较. 心理科学, 36(1), 196-203. 孙崇勇, 刘电芝. (2016). 学习材料的背景颜色对认知负荷及学习的影响. 心理科学, 39(4),869-874. 王辞晓. (2018). 具身认知的理论落地:技术支持下的情境交互. 电化教育研究, 39 (7), 22-28. 王福兴, 段朝辉, 周宗奎, 陈珺. (2015). 邻近效应对多媒体学习中图文整合的影响:线索的作用. 心理学报, 47(2), 224-233. 王抢, 朱彤, 朱可宁, 吴玲. (2014). 视觉与听觉次任务对驾驶人视觉的影响及差异. 安全与环境学报, 14(4), 49-52. 王文智. (2009). 基于认知负荷理论的多媒体教学呈现原则探讨. 远程教育杂志,17 (2), 33-37. 吴文春, 孙悦亮, 徐学. (2017). 三维图形的客体和空间工作记忆存储机制. 心理发展与教育, 33(2), 145-152. 谢和平, 安婧, 王福兴. (2017). 多媒体学习中的图文整合:同步化线索和学习者经验的作用. 心理科学, 40(5), 82-88. 王斌, 李智睿, 伍丽梅, 张积家. (2019). 具身模拟在汉语肢体动作动词理解中的作用. 心理学报, 51(12), 1291-1305. 汪存友, 王军, 李玲静. (2019). 工作记忆容量对软件操作技能教学视频自主学习效果和认知负荷的影响研究. 现代教育技术,29(1), 52-58. 邢强, 黄伟东. (2008). 认知负荷对顿悟问题解决的影响. 心理科学, 31(4), 981-983. 张慧, 张定文, 黄荣怀. (2018). 智能教育时代认知负荷理论发展、应用与展望——"第十一届国际认知负荷理论大会"综述. 现代远程教育研究, 156(6), 37-44. 张志祯. (2016). 虚拟现实教育应用:追求身心一体的教育——从北京师范大学"智慧学习与VR教育应用学术周"说起. 中国远程教育, 6, 5-15. 赵一鸣, 郝建江, 王海燕, 乔星峰. (2016). 虚拟现实技术教育应用研究演进的可视化分析. 电化教育研究, 37(12), 26-33. 朱福军, 郑萌, 顾倩颐.(2017). VR技术视角下课堂学习环境革新与重构. 中国教育技术装备, 2,43-45. |
[1] | 于晓, 张和颐, 戚玥, 陈英和, 刘浩宁, 赵煜燨, 乔学文. 抑制控制在类比映射发展中的作用:认知负荷的影响[J]. 心理发展与教育, 2023, 39(1): 1-11. |
[2] | 王燕青, 杨晓梦, 赵婷婷, 高春颍, 张洋, 赵庆柏, 王福兴, 胡祥恩. 分段是视频学习的有效方式吗?[J]. 心理发展与教育, 2022, 38(4): 600-608. |
[3] | 袁娟娟, 杨炀, 郑志伟, 刘萍萍. 图文横排促进低熟悉词汇再认:基于8岁儿童和成人证据[J]. 心理发展与教育, 2021, 37(4): 525-538. |
[4] | 刘勤学, 张聚媛, 林悦. 大学生智能手机成瘾与抑制控制能力的关系:手机位置和认知负荷的调节作用[J]. 心理发展与教育, 2021, 37(2): 257-265. |
[5] | 王舒, 殷悦, 王婷, 刘国芳, 罗俊龙. 教学设计中的成绩表现和心流体验:基于认知负荷视角[J]. 心理发展与教育, 2019, 35(3): 329-337. |
[6] | 龚德英, 刘电芝, 张大均. 概述和音乐对认知负荷和多媒体学习的影响[J]. 心理发展与教育, 2008, 24(1): 83-87. |
[7] | 曹宝龙, 刘慧娟, 林崇德. 认知负荷对小学生工作记忆资源分配策略的影响[J]. 心理发展与教育, 2005, 21(1): 36-42. |
|