Psychological Development and Education ›› 2015, Vol. 31 ›› Issue (1): 21-28.doi: 10.16187/j.cnki.issn1001-4918.2015.01.04
Previous Articles Next Articles
CHEN Yinghe
CLC Number:
Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016-1031. Brysbaert, M. (2004). Number recognition in different formats. In J. I. D Campbell, (Ed.), Handbook of Mathematical Cognition (pp. 23-42). Psychology Press: New York. Brannon, E. M., Abbott, S., & Lutz, D. (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93, B59-B68. Cordes, S., & Brannon, E. M. (2009). The relative salience of discrete and continuous quantities in infants. Developmental Science, 12, 453-463. Cordes, S., & Gelman, R. (2005). The young numerical mind: When does it count? In J. Campbell (Eds.), Handbook of mathematical cognition, 127-142. Cantlon, J. F., Safford, K. E., & Brannon, E. M. (2010). Spontaneous analog number representations in 3-year-old children. Developmental Science, 13(2), 289-297. Condry, K. F., & Spelke, E. S. (2008). The Development of Language and Abstract Concepts: The Case of Natural Number. Journal of Experimental Psychology: General, 137(1), 22-38. Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind & Language, 16, 37 -55. Carey, S. (2004). Boots trapping and the origins of concepts. Daedalus, 133, 59-68. Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press. Gelman, R. (1991). Epigenetic foundations of knowledge structures:Initial and transcendent constructions. In S. Carey & R. Gelman(Eds.), Epigenesis of mind: Essays on biology and cognition(pp. 293-322). Hillsdale, NJ: Erlbaum. Gentner, D., & Rattermann, M. J. (1991). Language and the career of similarity. In S. A. Gelman & J. P. Bymes (Eds.), Perspectives on thought and language-Interrelations in development. (pp. 225-277). London: Cambridge University Press. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 1-17. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. Fuson, K. C. (1988). Children's counting and concepts of number. New York: Springer-Verlag. Gilmore, C. K., McCarthy, S. E., & Spelke E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43-74. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103, 17-29. Imai, M., Gentner, D., & Uchida, N. (1994). Children's theories about word meaning: The role of shape similarity in early acquisition. Cognitive Development, 9, 45-75. Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221-1247. Jordan, K. E., & Brannon, E. M. (2003). Cardinal number representation in Rhesus monkeys. Poster presented at the annual North Carolina Cognition Group Conference, Durham, NC. Jordan, K. E., & Brannon, E. M. (2006). The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences, 103, 3486-3489. Laski, E. V., & Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections Among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development, 78(6), 1723-1743. Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395-438. Lee, M. D., & Sarnecka, B. W. (2010). A model of knower-level behavior in number concept development. Cognitive Science, 34(1), 51-67. Logan, G. D., & Zbrodoff, N. J. (2003). Subitizing and similarity: Toward a pattern-matching theory of enumeration. Psychonomic Bulletin & Review, 3, 676-682. Lipton, J. S., & Spelke, E. S. (2005). Preschool Children's Mapping of Number Words to Nonsymbolic Numerosities. Child Development, 76(5), 978-988. Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues forquantification in infancy: Is number one of them? Psychological Bulletin, 128, 278-294. Nieder, A. (2005). Counting on Neurons: The Neurobiology of Numerical Competence. Nature Reviews Neuroscience, 6, 177-190. Okamoto, Y., & Case, R. (1996). Exploring the microstructure of children's central conceptual structures in the domain of number. Monographs of the Society for Research in Child Development, 61(1-2), 27-58. Opfer, J. E., & Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology, 55(3), 169-195. Piaget, J. (1997). The child s conception of number. London: Rout-ledge. (Original work published 1941). Petitto, A. L. (1990). Development of Numberline and Measurement Concepts. Cognition and Instruction, 7(1), 55-78. Ramani, G. B., & Siegler, R. S. (2008). Promoting Broad and Stable Improvements in Low-Income Children's Numerical Knowledge Through Playing Number Board Games. Child Development, 79(2), 375-394. Sarnecka, B. W., &Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108, 662-674. Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children's numerical development. Developmental Science, 11(5), 655-661. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games-but not circular ones—improves low-income preschoolers' numerical understanding. Journal of Educational psychology, 101(3), 545-560. Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12-to 13-month-old infants. Cognitive Psychology, 29, 257-302. Whyte, J. C., & Bull, R. (2008). Number Games, Magnitude Representation, and Basic Number Skills in Preschoolers. Developmental Psychology, 44(2), 588-596. Wood, J. N., & Spelke, E. S. (2005). Infants' enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 8, 173-181. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749-750. Yi, M., & Kristy, V. (2014). Two core system f numerical representation in infants. Developmental Review, 34, 1-25. 陈英和, 赖颖慧. (2013). 儿童非符号数量表征的特点及作用探析. 北京师范大学学报(社会科学版), (1), 33-41. 韩瑽瑽,陈蒲晶,陈英和. (2010). 儿童数概念发展的影响因素: 表面相似性效应与标签效应. 心理发展与教育, (5), 449-456. 韩瑽瑽, 张静, 黄大庆, 陈英和. (2010). 2-4 年级数学困难与普通儿童数量估计能力的比较. 中国特殊教育, (4), 47-51. 韩瑽瑽. (2012). 表面相似性效应和标签效应对3~5岁儿童数概念发展的影响和促进. 北京师范大学博士学位论文. 韩瑽瑽,张静,陈英和.(2013).2~5 岁儿童的数概念发展水平理解者水平理论的视角. 心理科学, 36(5), 1133-1139. 赖颖慧, 陈英和, 陈聪. (2012). 视知觉线索对幼儿小数离散量表征的影响. 心理发展与教育, (4), 337-344. 王静, 陈英和, 曹仕莹. (2011). 类比数量表征的线索:离散量还是连续量. 心理发展与教育, (1), 1-8. 王静. (2010). 类比数量表征的线索和形式. 北京师范大学博士学位论文. 王乃弋, 罗跃嘉, 李红. (2006). 两种数量表征系统. 心理科学进展, 14(4), 610-617. 王一峰, 王荣燕, 李红. (2011). 感数的认知机制: 从注意到工作记忆. 心理科学进展, 19(7), 967-975. 徐华, 陈英和. (2012). 儿童数字线估计研究的述评与前瞻. 心理研究, 5(5), 46-50. 徐华. (2011). 幼儿线性数量表征的形成及其机制. 北京师范大学博士学位论文. 颜寅龙, 刘电芝, 张润来. (2009). 数字线估计研究: 回顾与展望. 科技信息, (5), 145, 141. |
|