Psychological Development and Education ›› 2023, Vol. 39 ›› Issue (3): 379-390.doi: 10.16187/j.cnki.issn1001-4918.2023.03.09
Previous Articles Next Articles
CHENG Yangchun1,2,3, HUANG Jin1,2
CLC Number:
带*的文献表示纳入元分析中的文献。 *Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM.Behavioral and Brain Functions, 9(1), 1-14. *Anobile, G., Stievano, P., & Burr, D. C. (2013). Visual sustained attention and numerosity sensitivity correlate with math achievement in children.Journal of Experimental Child Psychology, 116(2), 380-391. *Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12-28. *Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement:Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375-388. *Braham, E. J., & Libertus, M. E. (2017). Intergenerational associations in numerical approximation and mathematical abilities. Developmental Science, 20(5), e12436. https://doi.org/10.1111/desc.12436 *Braham, E. J., & Libertus, M. E. (2018). When approximate number acuity predicts math performance:The moderating role of math anxiety. PLoS ONE, 5(5), e195696. https://doi.org/10.1371/journal.pone.0195696 Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia.Trends in Cognitive Sciences, 14(12), 534-541. *Cai, D., Zhang, L., Li, Y., Wei, W., & Georgiou, G. K. (2018). The role of approximate number system in different mathematics skills across grades.Frontiers in Psychology, 9, 1733. https://doi.org/10.3389/fpsyg.2018.01733 *Castronovo, J., G bel, S. M., & Valdes-Sosa, P. A. (2012). Impact of high mathematics education on the number sense.PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832 Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance:A meta-analysis. Acta Psychologica, 148, 163-172. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:Erlbaum. Cohen, J. (1992). A power primer.Psychological Bulletin, 112(1), 155-159. Dehaene, S. (1997). The number sense:How mathematical knowledge is embedded in our brains. Oxford University Press *Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, Longitudinal Associations Between Math Ability and Approximate Number System Precision in Childhood. Journal of Cognition and Development, 20(1), 56-74. *Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement.Journal of Experimental Child Psychology, 123, 53-72. Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology:Evidence from pirahã language and cognition.Cognition, 108(3), 819-824. *Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes:Contributions of inhibitory control. Developmental Science, 16(1), 136-148. Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74-78. *Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406. *Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N.,… Chambers, C. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement.PLoS ONE, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374 *Gimbert, F., Camos, V., Gentaz, E., & Mazens, K. (2019). What predicts mathematics achievement? Developmental change in 5-and 7-year-old children. Journal of Experimental Child Psychology, 178, 104-120. Ginsburg, H. P., & Baroody, A. J. (2003).Test of early math ability (3rd ed.). Austin, Texas:Pro Ed. *Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement.Nature, 455(7213), 665-668. *He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students:A Longitudinal Cross-Lagged Analysis.Frontiers in Psychology, 7, 1052. https://doi.org/10.3389/fpsyg.2016.01052 Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude:An fMRI study.NeuroImage, 49(1), 1006-1017. Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193-206. Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. Inglis, M., Batchelor, S., Gilmore, C., & Watson, D. G. (2017). Is the ANS linked to mathematics performance?The Behavioral and Brain Sciences, 40, e174-e174. https://doi.org/10.1017/S01405 25X16002120 Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system.Acta Psychologica, 145, 147-155. *Jiménez Lira, C., Carver, M., Douglas, H., & LeFevre, J. (2017). The integration of symbolic and non-symbolic representations of exact quantity in preschool children. Cognition, 166, 382-397. *Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R.,… Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58. *Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685.https://doi.org/10.3389/fpsyg.2015.00685 *Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. *Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300. *Libertus, M. E., Feigenson, L., & Halberda, J. (2013a). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133. *Libertus, M. E., Feigenson, L., & Halberda, J. (2013b). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829-838. *Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373-379. Lindskog, M., Winman, A., & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 462. https://doi.org/10.3389/fpsyg.2014.00462 *Lonnemann, J., Linkersd rfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills.Journal of Neurolinguistics, 24(5), 583-591. *Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence.Proceedings of the National Academy of Sciences, 5(46), 18737-18742. *Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. *Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development.Journal of Educational Psychology, 112(6), 1167-1182. *Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237. *Negen, J., & Sarnecka, B. W. (2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children?British Journal of Developmental Psychology, 33(1), 92-105. Nys, J., Ventura, P., Fernandes, T., Querido, L., & Leybaert, J. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1), 13-22 *O'Connor, P. A., Morsanyi, K., & McCormack, T. (2018). Young children's non-numerical ordering ability at the start of formal education longitudinally predicts their symbolic number skills and academic achievement in maths. Developmental Science, 21(5), e12645. https://doi.org/10.1111/desc.12645 Odic, D., Le Corre, M., & Halberda, J. (2015). Children's mappings between number words and the approximate number system.Cognition, 138, 102-121. * Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A., & Halberda, J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17-26. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement:An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1186/s13643-021-01626-4 Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019. *Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive abilities and approximate number system to early mathematics.British Journal of Educational Psychology, 84(4), 631-649. *Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic:The mediation role of numerical knowledge.Journal of Experimental Child Psychology, 157, 111-124. Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system.Psychological Science, 24(6), 1037-1043 Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. *Praet, M., Titeca, D., Ceulemans, A., & Desoete, A. (2013). Language in the prediction of arithmetics in kindergarten and grade 1. Learning and Individual Differences, 27, 90-96. *Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison:Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults.Acta Psychologica, 140(1), 50-57. *Purpura, D. J., & Logan, J. A. R. (2015). The nonlinear relations of the approximate number system and mathematical language to early mathematics development.Developmental Psychology, 51(12), 1717-1724. Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2006).Publication bias in meta-analysis:Prevention, assessment and adjustments. John Wiley & Sons. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence:A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372 Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers.PLoS ONE, 11(4), e0153072. https://doi.org/10.1371/journal.pone.0153072 Siegler, R. S. (2016). Magnitude knowledge:The common core of numerical development.Developmental Science, 19(3), 341-361. *Silver, A. M., Elliott, L., Imbeah, A., & Libertus, M. E. (2020). Understanding the unique contributions of home numeracy, inhibitory control, the approximate number system, and spontaneous focusing on number for children's math abilities. Mathematical Thinking and Learning, 22(4), 296-311. *Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A. (2015). Identifying the cognitive predictors of early counting and calculation skills:Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 16-37. *Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116-18120. Szücs, D., & Myers, T. (2016). A critical analysis of design, facts, bias and inference in the approximate number system training literature:A systematic review. Trends in Neuroscience and Education, 6, 187-203. *Toll, S. W. M., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. H. (2015). The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17. *van Marle, K., Chu, F. W., i, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505. *VanDerHeyden, A. M., Broussard, C., Snyder, P., George, J., Lafleur, S. M., & Williams, C. (2011). Measurement of kindergartners' understanding of early mathematical concepts. School Psychology Review, 40(2), 296-306. Verguts, T., & Fias, W. (2004). Representation of number in animals and humans:A neural model.Journal of Cognitive Neuroscience, 16(9), 1493-1504. Wang, J., Halberda, J., & Feigenson, L. (2020). Emergence of the link between the approximate number system and symbolic math ability. Child Development, 92(2), e186-e200. https://doi.org/10.1111/cdev.13454 *Wei, W., Lu, H., Zhao, H., Chen, C., Dong, Q., & Zhou, X. (2012). Gender Differences in Children's Arithmetic Performance Are Accounted for by Gender Differences in Language Abilities. Psychological Science, 23(3), 320-330. *Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1), 157-181. Wilkey, E. D., & Ansari, D. (2020). Challenging the neurobiological link between number sense and symbolic numerical abilities.Annals of the New York Academy of Sciences, 1464(1), 7-98. *Wong, T. T. (2020). Are the acuities of magnitude representations of different types and ranges of numbers related?Testing the core assumption of the integrated theory of numerical development. Cognitive Development, 54, 100888. https://doi.org/10.1016/j.cogdev.2020.100888 *Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E. C. D. M. (2013). Individual differences in kindergarten math achievement:The integrative roles of approximation skills and working memory. Learning and Individual Differences, 28, 119-129. *Zhang, Y., Chen, C., Liu, H., Cui, J., & Zhou, X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7), 807-824. *Zhang, Y., Liu, T., Chen, C., & Zhou, X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning and Individual Differences, 71, 1-12. *Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency.Frontiers in Psychology, 6, 1364. https://doi.org/10.3389/fpsyg.2015.01364 贾砚璞, 张丽, 徐展. (2019). 自适应的数感训练对低年级儿童数学能力的影响. 数学教育学报, 28(02), 30-34. 康丹, 张利, 蔡术, 刘江萍, 陆梅怡, 刘秋香. (2020). 儿童近似数量系统精确性与数学能力的关系研究. 数学教育学报, 29(3), 19-24+31. *孔海燕, 孙雨, 宋广文. (2017). 小学生近似数量表征系统和工作记忆与数学成绩的关系. 数学教育学报, 26(2), 14-18. 梁笑, 康静梅, 王丽娟. (2021). 个体近似数量系统与其数学能力之间的关系:发展研究的证据. 心理科学进展, 29(05), 827-837. 刘文, 秦梦嫄. (2019). 近似数量系统敏锐度与符号数学能力的关系、训练研究及展望. 辽宁师范大学学报(社会科学版), 42(01), 40-47. *刘亚飞, 原梦, 李振兴. (2019). 小学生数感与数学能力的关系. 江苏第二师范学院学报, 35(05), 77-83. *牛玉柏, 时冉冉, 曹贤才. (2016). 学前儿童近似数量系统敏锐度与符号数学能力的关系. 心理发展与教育, 32(02), 129-138. *张继英. (2019). 5~6岁儿童近似数量系统精确性和数学能力关系的研究(硕士学位论文).华东师范大学, 上海. 周新林. (2016). 教育神经视野中的数学教育创新. 北京:教育科学出版社. |
[1] | XIE Heping, WANG Yanqing, WANG Fuxing, ZHOU Zongkui, DENG Sue, DUAN Zhaohui. Generative Drawing Effect in Memory and Its Boundary Conditions: A Meta-analysis [J]. Psychological Development and Education, 2024, 40(1): 29-43. |
[2] | NIU Xiang, RAN Guangming. The Association between Peer Relationship and Preschoolers' Problem Behavior: A Three-level Meta-analysis [J]. Psychological Development and Education, 2023, 39(4): 473-487. |
[3] | GAO Feng, BAI Xuejun, ZHANG Peng, CAO Haibo. A Meta-analysis of the Relationship between Parenting Styles and Suicidal Ideation in Chinese Adolescents [J]. Psychological Development and Education, 2023, 39(1): 97-108. |
[4] | XIE Yuntian, SHI Zifu, YIN Lin, LAN Luo. A Meta-analysis of the Relationships between Chinese Parenting Styles and Children’s Academic Achievement [J]. Psychological Development and Education, 2022, 38(3): 366-379. |
[5] | SHI Guochun, ZHAO Dongyan, FAN Huiyong. Changes in College Students' Physical Self-esteem in 2004~2016: A Cross-temporal Meta-analysis [J]. Psychological Development and Education, 2021, 37(5): 648-659. |
[6] | NIU Kaining, LI Mei, ZHANG Xiangkui. The Relationship Between Adolescents' Friendship Quality and Subjective Well-being: A Meta-analysis [J]. Psychological Development and Education, 2021, 37(3): 407-418. |
[7] | YAN Zhiqiang, SU Yanjie. Difference between Cognitive Empathy and Affective Empathy in Development: Meta-analysis Preliminary Exploration [J]. Psychological Development and Education, 2021, 37(1): 1-9. |
[8] | XIN Sufei, YUE Yangming, XIN Ziqiang. A Cross-temporal Meta-analysis of Changes in Chinese Old People's Mental Health During 1996—2016 [J]. Psychological Development and Education, 2020, 36(6): 753-761. |
[9] | LEI Lili, RAN Guangming, ZHANG Qi, MI Qianwen, CHEN Xu. The Associations between Parenting Styles and Anxiety in Preschool-age Children: A Three-level Meta-analysis [J]. Psychological Development and Education, 2020, 36(3): 329-340. |
[10] | LI Song, RAN Guangming, ZHANG Qi, HU Tianqiang. A Meta-analysis of the Relationship between Self-efficacy and Mental Health with Chinese Samples [J]. Psychological Development and Education, 2019, 35(6): 759-768. |
[11] | ZHOU Li, WANG Fuxing, XIE Heping, CHEN Jiaxue, XIN Liang, ZHAO Qingbai. Does Emotional Design in Multimedia Learning Facilitate Learning? A Meta-analysis [J]. Psychological Development and Education, 2019, 35(6): 697-709. |
[12] | XIN Sufei, WANG Yixin. A Cross-Temporal Meta-analysis of Changes in Chinese College Students' Achievement Motivation During 1999~2014 [J]. Psychological Development and Education, 2019, 35(3): 288-294. |
[13] | XIN Sufei, YUE Yangming, XIN Ziqiang, LIN Chongde. Changes in Chinese Old People's Social Support During 1996~2015: A Cross-Temporal Meta-Analysis [J]. Psychological Development and Education, 2018, 34(6): 672-681. |
[14] | ZHANG Mei, SUN Dongqing, XIN Ziqiang, HUANG Silin. Changes in Impoverished College Students' Mental Health in China: A Cross-temporal Meta-analysis 1998-2015 [J]. Psychological Development and Education, 2018, 34(5): 625-632. |
[15] | YAN Zhiqiang, SU Yanjie. Gender Difference in Empathy: The Evidence from Meta-analysis [J]. Psychological Development and Education, 2018, 34(2): 129-136. |
|