心理发展与教育 ›› 2009, Vol. 25 ›› Issue (4): 21-29.

• 论文 • 上一篇    下一篇

儿童数字估计的表征模式与发展

周广东1, 莫雷1, 温红博2   

  1. 1. 华南师范大学心理应用研究中心, 广州 510631;
    2. 北京师范大学教育学部, 北京 100875
  • 出版日期:2009-10-15 发布日期:2009-10-15
  • 通讯作者: 莫雷,华南师范大学教授.E-mail:molei@scnu.edu.cn E-mail:molei@scnu.edu.cn
  • 基金资助:
    基金项目:教育部哲学社会科学研究重大课题攻关项目资助(项目名称:儿童、青少年学习的认知过程研究与学习能力的培养;项目号:05JZD00034);教育部人文社会科学重点研究基地2004年度重大研究项目(项目号:05JJDXLX005)

Representational Patterns of Numerical Estimation and its Development in Children

ZHOU Guang-dong1, MO Lei1, WEN Hong-bo2   

  1. 1. Center for studies of Psychological Application, South China Normal University, Guangzhou 510631;
    2. Division of Education, Beijing Normal University, Beijing 100875
  • Online:2009-10-15 Published:2009-10-15

摘要: 探讨中国儿童数字估计的表征模式与发展趋势。包括两个实验,均采用数字线估计任务,实验一以92名幼儿园、一年级及二年级儿童为被试,考察其在0~100范围的数字估计,结果显示,幼儿园儿童在数字估计更多地采用对数表征,而一二年级的儿童在数字估计中更多地采用线性表征;实验二以86名一、三、五年级儿童为被试,考察其在0~1000范围的数字估计,结果显示,一年级儿童有一半采用对数表征,另一半采用线性表征,而三五年级儿童大多采用线性表征。中国儿童的数字估计表现出与美国儿童相同的发展模式,都是由不精确的对数表征逐步向精确的线性表征发展;人的数表征有多种形式,即使在同一年龄阶段,也会因任务难度的不同而选择不同的表征模式。中国儿童精确数字估计能力的出现要早于美国儿童。

关键词: 儿童, 数字估计, 数字表征, 线性表征, 对数表征

Abstract: Two experiments examined the development of children's numerical estimation and representations that gave rise to their estimates.In experiment 1,92 children from kindergarten,grade one and grade two were asked to estimate the locations of numbers on number lines with 0 at one end and 100 at the other and no markings in between.The result of experiment 1 indicated that most kindergarteners produced estimates consistent with a logarithmic function;most first and second graders produced estimates consistent with a linear function.In experiment 2,86 children from grade one, grade three and grade five were asked to estimate the locations of numbers on number lines with 0 at one end and 1000 at the other and no markings in between.There are 26 numbers selected in each experiment.The result of experiment-indicated that about half of first graders produced estimates that were best fit by linear function and half by logarithmic function,the large majority of third and fifth graders produced estimates consistent with a linear function.Both the results were against the view that people rely on any single representation of numbers,but for the Siegler's multiple-representations perspective.Compared with the children in the United States,the Chinese children showed the same development trend as the children in the United States,that is,with increasing age and numerical experience,they rely on appropriate representations increasingly often,but they showed better accuracy in numerical estimation task than their age peers in the United States.

Key words: children, numerical estimation, numerical representation, linear representation, logarithmic representation

中图分类号: 

  • B844.1
[1] Dowker A.(2003).Young children's estimates for addition:The zone of partial knowledge and understanding.In Baroody A J,Dowker A (Eds.),The development of arithmetic concepts and skills:Constructing adaptive expertise(pp.243-265).Mahwah,NJ:USum Associates, Publishers.
[2] Siegler R S,Booth J L.(2004).Development of numerical estimation in young children.Child Development,75:428-444.
[3] Booth J L.(2005).The importance of an accurate understanding of numerical magnitudes.Unpublished doctoraldissertation,Carnegie Mellon University,Pittsburgh,PA.
[4] Laski E,Siegler R S.(2005).Children's number categories and their understanding of numerical magnitude.Unpublished manuscript.
[5] NCTM(1980).An agenda for action:Recommendations for school mathematics of the 1980s.Reston,VA:National Council of Teachers of Mathematics.
[6] NCTM(1989).Curriculum and evaluation standards for school mathematics.Reston,VA:National Council of Teachers of Mathematics.
[7] NCTM(2000).Principles and standards for school mathematics: Higher standards for our students.Higher standards for ourselves. Washington,DC:National Council of Teachers of Mathematics.
[8] Siegler R S,Opfer J E.(2003).The development of numerical estimation:evidence for multiple representations of numerical quantity. Psychological Science,14:237-243.
[9] Opfer J E,Siegler R S.(2007).Representational change and children's numerical estimation.Cognitive Psychology,55:169-195.
[10] Siegler R S,Mu Y(2008).Chinese children excel on novel mathematics problems even before elementary school.Psychological Science, 19:759-763.
[11] Booth J L,Siegler R S.(2006).Developmental and individual diVerences in pure numerical estimation.Developmental Psychology,41:189-201.
[12] Dehaene S.(1997).The number sense:How the mind creates mathematics.New York:Oxford University Press:73-76.
[13] Banks W P,Hill D K.(1974).The apparent magnitude of number scaled by random production.Journal of Experimental Psychology Monograph,102:353-376.
[14] Dehaene S,et al.Log or Linear?Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures.Science 320,1217 (2008).
[15] Gibbon J,Church R M.(1981).Time left:Linear versus logarithmic subjective time.Journal of the Experimental Analysis of Behavior, 7:87-107.
[16] Whalen J,Gallistel C R,Gelman R.(1999).Nonverbal counting in humans:The psychophysics of number representation.Psychological Science,10:130-137.
[17] Huntley 2Fenner G.(2001).Children's understanding of number is similar to adults'and rats':Numerical estimation by 5-7 year2olds. Cognition,78:B27-B40.
[18] Case R,Sowder J T.(1990).The development of computational estimation:A neo 2Piagetian analysis.Cognition and Instruction,7:79-104.
[19] Siegler R S.(1996).Emerging minds:The process of change in children's thinking.New York:Oxford University Press.
[20] Stevenson H W,Lee S Y,Stigler J W(1986).Mathematics achievement of Chinese,Japanese,and American children.Science,231: 593-699.
[21] Stevenson H W,Chen C S,Lee S Y(1993).Mathematics achievement of Chinese,Japanese,and American children:Ten years later. Science,259:53-58.
[22] Geary D C,Fan L,Bow 2Thomas C C(1992).Loci of ability differences comparing children from China and the United States. Psychological Science,3(3):180-185.
[23] Geary D C,Bow 2Thomas C C,Fan L,Siegler R S(1993).Even before formal instruction,Chinese children outperform American children in mental addition.Cognitive Development,8:517-529.
[1] 储月, 刘希平, 徐慧, 唐卫海. 儿童社会分享型提取诱发遗忘的发展特点[J]. 心理发展与教育, 2024, 40(2): 153-159.
[2] 刘艳春, 邓玉婷, 张曦. 智力障碍儿童对不同对象的分享行为:心理理论的作用[J]. 心理发展与教育, 2024, 40(2): 160-168.
[3] 梁丹丹, 闫晓民, 葛志林. 4~8岁汉语高功能自闭症儿童基于语言线索的情绪识别能力发展研究[J]. 心理发展与教育, 2024, 40(2): 169-175.
[4] 史梦梦, 任桂琴, 孙军红, 张鑫星. 词汇类型和阅读水平对小学一年级儿童阅读理解监控的影响[J]. 心理发展与教育, 2024, 40(2): 207-214.
[5] 冷欣怡, 苏萌萌, 李文玲, 杨秀杰, 邢爱玲, 张湘琳, 舒华. 家庭环境与农村儿童早期语言发展的关系[J]. 心理发展与教育, 2024, 40(1): 8-18.
[6] 赵京伟, 陈晓旭, 任立文, 耿喆, 徐夫真. 父母心理控制与小学儿童焦虑:一个有调节的中介模型[J]. 心理发展与教育, 2024, 40(1): 93-102.
[7] 朱娜平, 刘雁伶, 熊红梅, 赵攀. “公无远近”有早晚:不同资源分配情境中儿童公平规范执行行为发展特点[J]. 心理发展与教育, 2023, 39(6): 772-780.
[8] 颜志强, 周可, 曾晓, 徐惠, 朱晓倩, 张娟. 学前期儿童执行功能与攻击性行为的关系:认知共情的中介作用[J]. 心理发展与教育, 2023, 39(6): 788-797.
[9] 任立文, 马原驰, 张清瑶, 张玲玲, 徐夫真. 父母心理控制与儿童学校适应的关系:基于交叉滞后的分析[J]. 心理发展与教育, 2023, 39(5): 635-644.
[10] 李甜甜, 董会芹. 父母冲突知觉与儿童焦虑情绪:正负性信息注意偏向的中介作用及性别的调节作用[J]. 心理发展与教育, 2023, 39(4): 488-496.
[11] 银小兰, 周路军, 朱翠英. 学校环境对农村留守儿童亲社会行为的影响:心理资本与生活满意度的中介作用[J]. 心理发展与教育, 2023, 39(4): 497-504.
[12] 赵纤, 王志航, 王东方, 袁言云, 尹霞云, 黎志华. 贫困家庭儿童在青少年早期的亲社会行为发展轨迹:性别及父母教养方式异质性的影响[J]. 心理发展与教育, 2023, 39(3): 323-332.
[13] 张玉平, 董琼, 宋爽, 舒华. 小学低年级儿童的阅读发展轨迹:早期语言认知技能的预测作用[J]. 心理发展与教育, 2023, 39(2): 210-218.
[14] 李君, 王悦, 陈夏妮, 李莹. 二语学习对汉语学龄儿童认知控制与词汇通达的作用——年龄和二语熟练程度的影响[J]. 心理发展与教育, 2023, 39(2): 219-227.
[15] 鲁明辉, 王融, 张丽敏. 父母心理弹性与自闭症谱系障碍儿童情绪行为问题的关系:一个有调节的中介模型[J]. 心理发展与教育, 2023, 39(2): 247-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!