心理发展与教育 ›› 2021, Vol. 37 ›› Issue (2): 190-198.doi: 10.16187/j.cnki.issn1001-4918.2021.02.06
曹碧华, 曾春雲, 廖虹, 李富洪
CAO Bihua, ZENG Chunyun, LIAO Hong, LI Fuhong
摘要: 从心理长度的角度探讨二年级儿童在0~100和0~1000数字范围存在不同表征方式的原因。实验一要求二年级儿童完成长度均为10cm,范围分别为0~100和0~1000的数字线估计任务。实验二要求儿童对长度分别为10cm和18cm,范围均为0~1000的数字线进行估计。结果发现在两个实验中二年级儿童的估计均存在心理长度,但与以往研究的一年级儿童相比,心理长度的范围有所缩小。随着数字范围的增大或长度的减小,儿童的表征方式出现了从线性表征向对数表征的转变趋势。这些结果表明不精确的表征方式可能与心理长度策略的使用有关,心理长度在一定程度上影响了二年级儿童的估计表征方式。
中图分类号:
Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation:Evidence against a representational shift. Developmental Science, 14(1), 125-135. Case, R., & Okamoto Y. (1996). The role of central conceptual structures in the development of children's thought. Monographs of the Society for Research in Child Development, 61(1-2),v-265. Dehaene, S. (1997). The number sense:How the mind creates mathematics. New York:Oxford University Press. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children:Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 1-17. Houdé, O., & Guichart, E. (2001). Negative priming effect after inhibition of number/length interference in a piaget-like task. Developmental Science, 4(1), 119-123. Siegler, R. S. (1996). Emerging minds:The process of change in children's thinking. New York:Oxford University Press. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation:Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-243. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. Opfer, J. E., & Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology, 55(3), 169-195. van Viersen, S., Slot, E. M., Kroesbergen, E. H., Van't Noordende, J. E., & Leseman, P. P. M. (2013). The added value of eye-tracking in diagnosing dyscalculia:A case study. Frontiers in Psychology, 4(679), 1-13. White, S. L., & Szücs, D. (2012). Representational change and strategy use in children's number line estimation during the first years of primary school. Behavioral and Brain Functions, 8(1), 1-12. 陈英和. (2015). 儿童数量表征与数概念的发展特点及机制. 心理发展与教育, 31(1), 21-28. 付馨晨, 李晓东. (2017). 认知抑制——问题解决研究的新视角. 心理科学, 40(1), 58-63. 胡林成, 熊哲宏. (2017). 数字表征的表象赋义效应:来自数字线估计任务的证据. 心理科学, 40(2), 303-309. 胡林成, 熊哲宏. (2018). 时间赋义对数字空间表征的影响:来自数字线估计任务的证据. 心理科学, 41(1), 58-63. 李晓东, 黄艳秋. (2007). 类皮亚杰数量守恒任务中的负启动效应. 应用心理学, 13(2), 149-153. 李晓东, 徐雯, 李娜燕. (2012). 潜逻辑运算类皮亚杰守恒任务中的负启动效应. 心理科学, 35(2), 358-363. 刘国芳, 辛自强. (2012). 数字线估计研究:"模型"背后的策略. 心理研究, 5(2), 27-33. 柳笛, 杨纯. (2017). 儿童数量表征研究评述. 华东师范大学学报(教育科学版), 35(5), 138-163. 莫雷, 周广东, 温红博. (2010). 儿童数字估计中的心理长度. 心理学报, 42(5), 569-580. 潘茂明. (2011). 6~7岁儿童数字估计能力发展的追踪研究(硕士学位论文). 首都师范大学. 宋广文, 李晓芹, 朱振菁. (2013). 小学儿童数字线估计的心理表征模式. 数学教育学报, 22(5), 52-56. 吴晓超. (2017). 儿童数量表征能力发展的追踪研究. 心理研究, 10(6), 37-43. 徐华, 陈英和. (2012). 儿童数字线估计研究的述评与前瞻. 心理研究, 5(5), 46-50. 周广东, 莫雷, 温红博. (2009). 儿童数字估计的表征模式与发展. 心理发展与教育, 25(4), 21-29. 张丽, 卢彩芳, 杨新荣. (2014). 3~6年级儿童整数数量表征与分数数量表征的关系. 心理发展与教育, 30(1), 1-8. 张帆, 赖颖慧, 陈英和. (2015). 儿童数字线表征的发展——心理长度的影响. 心理发展与教育, 31(2), 149-156. |
[1] | 高瑞彦, 牛美心, 杨涛, 周新林. 4~8年级学生分数数量表征的准确性及形式[J]. 心理发展与教育, 2018, 34(4): 443-452. |
[2] | 张帆, 赖颖慧, 陈英和. 儿童数字线表征的发展——心理长度的影响[J]. 心理发展与教育, 2015, 31(2): 149-156. |
[3] | 卢淳, 郭红力, 司继伟, 孙燕. 不同数字线下儿童与成人分数估计的表征模式[J]. 心理发展与教育, 2014, 30(5): 449-456. |
[4] | 周广东, 莫雷, 温红博. 儿童数字估计的表征模式与发展[J]. 心理发展与教育, 2009, 25(4): 21-29. |
|