心理发展与教育 ›› 2014, Vol. 30 ›› Issue (1): 1-8.
• 认知与社会性发展 • 下一篇
张丽1, 卢彩芳1, 杨新荣2
ZHANG Li1, LU Cai-fang1, YANG Xin-rong2
摘要: 研究主要探讨了整数数量表征和分数数量表征的关系以及年级对两者关系的影响。实验对155名三至六年级儿童进行0~1分数数字线估计任务和0~1000整数数字线估计任务的测量。结果发现:(1)对于整数数字线估计,所有年级儿童均主要采取了线性表征;(2)对于分数数字线估计,五六年级儿童主要采取了线性表征,三四年级儿童没有明显的线性表征或对数表征的倾向;(3)整数数量表征和分数数量表征呈显著正相关,不过年级对两者的关系产生了影响,表现在只有五六年级儿童的整数数字线估计对分数数字线估计有显著预测作用。
中图分类号:
B844.1
Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410-1419.Bright, G. W., Behr, M. J., Post, T. R., & Wachsmuth, I. (1988). Identifying fractions on number lines. Journal for Research in Mathematics Education, 19(3), 215-232.Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189-201.Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79 (4), 1016-1031.Carpenter, T. P., Corbitt, M. K., Kepner, H., Jr., Lindquist, M. M., & Reys, R. (1981). Results from the second mathematics assessment of the National Assessment of Educational Progress. Washington, DC: National Council of Teachers of Mathematics.Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2013, Apr). Relations of symbolic and non-symbolic fraction and whole number magnitude representations to each other and to mathematics achievement. Spoken presentation to be given at the biennial meeting of the Society for Research on Child Development, Seattle, WA.Hecht, S., Vagi, K., & Torgensen, J. (2007). Fraction skills and proportional reasoning. In: Berch, D., Mazzocco, M. (Eds.), Why is math so hard for some children (pp.121-132). Paul H. Brookes Publishing, Baltimore.Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1), 43-74.Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8, 242-256.Iuculano, T., & Butterworth, B. (2011). Understanding the real value of fractions and Decimals.The Quarterly Journal of Experimental Psychology, 64(11), 2088-2098.Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 76,1723-1743.Mack, N. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26, 422-441.Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them?. Psychological Bulletin, 128(2), 278-294.Ni, Y., & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40 (1), 27-52.Opfer, J. E., & Devries, J. M. (2008). Representational Change and Magnitude Estimation: Why Young Children can Make More Accurate Salary Comparisons than Adults. Cognition, 108(3), 843-849. Opfer, J. E., & Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology, 55, 169-195.Pearn, C., & Stephens, M. (2004). Why do you have to probe to discover what Year 8 students really think about fractions. In I. Putt, R. Faragher, & M. McLean (Eds.), Mathematics education for the third millennium: Towards 2010 (Vol. 2, pp. 430-437). Sydney: MERGA.Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. P. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.Stafylidou, S., & Vosniadou, S. (2004). The development of student's understanding of the numerical value of fractions. Learning and Instruction, 14(5), 508-518.Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students' understanding of the infinite divisibility of number and matter. CognitivePsychology, 51, 101-140.Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development,75(2), 428-444.Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Science, 17, 13-19.Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237-243.Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children's numerical development. Development Science, 11(5), 655-661.Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind, Brain, and Education, 2, 143-150.Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology,62 (4), 273-296.Thompson, C. A., & Opfer, J. E. (2008). Costs and benefits of representational change: Effects of context on age and sex differences in symbolic magnitude estimation. Journal of Experimental Child Psychology, 101(1), 20-51.Thompson, C. A., & Opfer, J. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 1768-1786.Thompson, C. A., & Siegler, R. S. (2010). Linear numerical magnitude representations aid children's memory for numbers. Psychological Science, 21, 1274-1281周广东, 莫雷,温红博. (2009). 儿童数字估计的表征模式与发展. 心理发展与教育, 25(4), 21-29.张丽, 辛自强, 王琦, 李红. (2012). 整数构成对分数加工的影响. 心理发展与教育, 1, 37-44.李晓芹. 小学儿童数字线估计的发展研究. 曲阜师范大学, 2008.郭红力. 小学高年级儿童的分数数量表征. 山东师范大学, 2010. |
[1] | 张小敏, 陈欣, 务凯, 赵国祥. 学校联结和学业能力对高中生自尊的影响:一个多层线性模型[J]. 心理发展与教育, 2022, 38(3): 358-365. |
[2] | 官冬晓, 艾继如, 黄碧娟, 崔爽, 司继伟. 数学焦虑影响儿童的数量表征:认知抑制的调节作用[J]. 心理发展与教育, 2020, 36(1): 10-18. |
[3] | 高瑞彦, 牛美心, 杨涛, 周新林. 4~8年级学生分数数量表征的准确性及形式[J]. 心理发展与教育, 2018, 34(4): 443-452. |
[4] | 张帆, 赖颖慧, 陈英和. 儿童数字线表征的发展——心理长度的影响[J]. 心理发展与教育, 2015, 31(2): 149-156. |
[5] | 陈英和. 儿童数量表征与数概念的发展特点及机制[J]. 心理发展与教育, 2015, 31(1): 21-28. |
[6] | 卢淳, 郭红力, 司继伟, 孙燕. 不同数字线下儿童与成人分数估计的表征模式[J]. 心理发展与教育, 2014, 30(5): 449-456. |
[7] | 胡艳蓉, 张丽, 陈敏. 手指的感知、运动以及数量表征对数字认知的促进作用[J]. 心理发展与教育, 2014, 30(3): 329-336. |
[8] | 吴文峰, 卢永彪, 陈世英. 学龄儿童失调态度在应激与抑郁间的作用:一项多波段追踪研究[J]. 心理发展与教育, 2013, 29(2): 183-191. |
[9] | 贾小娟, 胡卫平, 武宝军. 小学生学习动机的培养:五年追踪研究[J]. 心理发展与教育, 2012, 28(2): 184-192. |
[10] | 李海垒, 张文新, 于凤杰. 青少年受欺负与抑郁的关系[J]. 心理发展与教育, 2012, 28(1): 77-82. |
[11] | 张平平, 李凌艳, 辛涛. 学校氛围对学生数学成绩影响的跨文化比较:基于多水平分析的结果[J]. 心理发展与教育, 2011, 27(6): 625-632. |
[12] | 赵冬梅, 周宗奎, 范翠英, 柯善玉. 童年期攻击行为发展的追踪研究[J]. 心理发展与教育, 2009, 25(4): 30-36. |
[13] | 晏倩, 熊哲宏. 国外人类先天“数字模块”的研究现状及展望[J]. 心理发展与教育, 2006, 22(4): 115-118. |
[14] | 李雪燕, 辛涛. 二分数据的多层线性模型:原理与应用[J]. 心理发展与教育, 2006, 22(4): 97-102. |
[15] | 刘红云, 孟庆茂. 教师背景变量对教师教学效果影响的多层线性分析[J]. 心理发展与教育, 2002, 18(4): 70-75. |
|