心理发展与教育 ›› 2012, Vol. 28 ›› Issue (2): 210-217.
韩玉蕾1, 辛自强2, 胡清芬1
HAN Yu-lei1, XIN Zi-qiang2, HU Qing-fen1
摘要: 等值分数是表示具有相等值的分数,它建立在两个量具有确定比例关系的基础上。研究表明,儿童在接受正式教学之前,就具有了等值分数的非正式知识,但仍然在概念理解上存在很大的困难,主要有两方面的原因:一是受自身运算思维发展水平的制约,未获得乘法思维和守恒观念;二是缺乏对等值分数不同语义的理解。在今后研究中,需进一步探讨从非正式知识到正式概念之间的发展路径,尝试开展等值分数的早期教学实验,并需要结合多种语义背景来考查儿童的概念发展水平。
中图分类号:
[1] Barth,H.,Baron,A.,Spelke,E.,&Carey,S.(2009).Children's multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology,103,441-454. [2] Behr,M.,Lesh,R.,Post,T.,&Silver,E.(1983).Rational number concepts.In R.Lesh&M.Landau(Eds.),Acquisition of mathematics concepts and processes(pp.91-125).New York: Academic Press. [3] Behr,M.J.,Wachsmuth,I.,Post,T.,&Lesh,R.(1984).Order and equivalence of rational numbers:A clinical teaching experiment. Journal for Research in Mathematics Education,15(5),323-341. [4] Behr,M.,Harel,G.,Post,T.,&Lesh,R.(1992).Rational number,ratio and proportion.In D.Grouws(Ed.),Handbook of research on mathematics teaching and learning(pp.296-333).New York:Macmillan Publishing. [5] Biehler,R.(2005).Reconstruction of meaning as a didactical task: The concept of function as an example.Meaning in mathematics education,37,61-81. [6] Boyer,T.W.,Levine,S.C.,&Huttenlocher,J.(2008). Development of proportional reasoning:Where young children go wrong.Developmental Psychology,44(5),1478-1490. [7] Brannon,Elizabeth,M.(2002).The development of ordinal numerical knowledge in infancy.Cognition,83(3),223-240. [8] Brousseau,G.,Brousseau,N.,&Warfield,V.(2004).Rationals and decimals as required in the school curriculum.Journal of Mathematical Behavior,23,1-20. [9] Cathcart,W.,Pothier,Y.,Vance,J.,&Bezuk,N.(2006). Learning mathematics in elementary and middle schools:A learner-centered approach(4th ed.).Upper Saddle River,NJ:Pearson Prentice Hall. [10] Chapin,S.H.,&Johnson,A.(2006).Math matters:Understanding the math you teach,Grades K-8(2nd ed.).Sausalito,CA:Math Solutions. Clarke,D.M.,&Roche,A.(2009).Students'fraction comparison strategies as a window into robust understanding and possible pointers for instruction.Educational Studies in Mathematics,72,127-138. [11] Columba,H.L.(1989).Equivalent fraction concepts:A teaching experiment.Unpublished doctoral dissertation,University of Louisville, Kentucky,America. [12] English,L.,&Halford,G.S.(1995).Mathematics education:Models and processes.Mahwah,NJ:Erlbaum. Goswami,U.(2004).Cognitive development:No stages please-we're British.In H.Daniels.,&A.Edwards(Eds.),The RoutledgeFalmer reader in psychology of education(pp.184-202). London:Routledge. [13] Jeong,Y.,Levine,S.,&Huttenlocher,J.(2007).The development of proportional reasoning:Effect of continuous vs.discrete quantities. Journal of Cognition and Development,8,237-256. [14] Kamii,C.,&Clark,F.B.(1995).Equivalent fractions:Their difficulty and educational implications.Journal of Mathematical Behavior,14,365-378. [15] Kieren,T.E.(1993).Rational and fractional numbers:From quotient fields to recursive understanding.In T.Carpenter,E.Fennema,& T.Romberg(Eds.),Rational numbers:An integration of research (pp.49-84).Hillsdale,NJ:Lawrence Erlbaum Associates. [16] Lesh,R.,Cramer,K.,Doerr,H.,Post,T.,&Zawojewski,J. (2003).Using a translation model for curriculum development and classroom instruction.In R.Lesh&H.Doerr(Eds.),Beyond constructivism:Models and modeling perspectives on mathematics problem solving,learning,and teaching.Mahwah,NJ:Lawrence Erlbaum Associates. [17] McCrink,K.,&Wynn,K.(2007).Ratio abstraction by 6-month-old infants.Psychological Science,18,740-745. [18] McCrink,K.,&Spelke,E.S.,(2010).Core multiplication in childhood.Cognition,116,204-216. [19] Mcnamara,J.,&Shaughnessy,M.M.(2010).Beyond pizzas&pies: 10 essential strategies for supporting fraction sense,Grades 3-5.Sausalito,CA:Math Solutions. [20] Mitchell,A.,&Horne,M.(2010).Gap thinking in fraction pair comparisons is not whole number thinking:Is this what early equivalence thinking sounds like?In L.Sparrow,B.Kissane,&C. Hurst(Eds.),Shaping the future of mathematics education. (Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia,pp.414-421). Fremantle:MERGA. [21] Moss,J.,&Case,R.(1999).Developing children's understanding of the rational numbers:A new model and an experimental curriculum. Journal for Research in Mathematics Education,30(2),122-147. [22] National Council of Teachers of Mathematics.(2000).Principles and standards for school mathematics.Reston,VA:Author. [23] Ni,Y.J.(2001).Semantic domains of rational numbers and the acquisition of fraction equivalence.Contemporary Educational Psychology,26,400-417. [24] Ni,Y.J.,&Zhou,Y.D.(2005).Teaching and learning fraction and rational numbers:The origins and implications of whole number bias. Educational Psychologist,40,27-52. [25] Nunes,T.,&Bryant,P.(2008).Rational numbers and intensive quantities:Challenges and insights to pupils'implicit knowledge. Anales de Psicologia,24(2),262-270. [26] Pearn,C.,Stephens,M.,&Lewis,G.(2003).Assessing rational number knowledge in the middle years of schooling.In M.Goos&T. Spencer(Eds.),Mathematics:Making waves.(Proceedings of the 19th Biennial Conference of the Australian Association of Mathematics Teachers,pp.170-178).Adelaide:AAMT. [27] Pearn,C.,&Stephens,M.(2007).Whole number knowledge and number lines help to develop fraction concepts.In J.Watson&K. [28] Beswick(Eds.),Mathematics:Essential research,essential practice. (Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia,Vol.2,pp.601-610).Fremantle:MERGA. [29] Piaget,J.,&Inhelder,B.(1975).The origin of the idea of chance in children.New York:Norton.(Original work published in 1951). [30] Post,T.R.,Wachsmuth,I.,Lesh,R.,&Behr,M.J.,(1985). Order and equivalence of rational number:A cognitive analysis. Journal for Research in Mathematics Education,16(1),18-36. [31] Singer-Freeman,K.E.,&Goswami,U.(2001).Does half a pizza equal half a box of chocolates:Proportional matching in an analogy paradigm.Cognitive Development,16,811-829. [32] Smith,C.,Solomon,G.,&Carey,S.(2005).Never getting to zero: Elementary school students'understanding of the infinite divisibility of number and matter.Cognitive Psychology,51,101-140. [33] Sophian,C.(2007).The origins of mathematical knowledge in childhood.New York:Lawrence Erlbaum Associates. [34] Spinillo,A.G.,&Bryant,P.(1991).Children's proportional judgments:The importance of"half."Child Development,62,427-440. [35] Spinillo,A.G.(2002).Children's use of part-part comparisons to estimate probability.Journal of Mathematical Behavior,21(3),357-369. [36] Steffe,L.(1994).Children's multiplying schemes.In G,Harel&J, Confrey(Eds.),The development of multiplicative reasoning in the learning of mathematics.Albany,NY:State University of New York Press. [37] Vamvakoussi,X.,&Vosniadou,S.(2004).Understanding the structure of the set of rational numbers:A conceptual change approach.Learning and Instruction,14,453-467. [38] Van Dooren,W.,De Bock,D.,Hessels,A.,Janssens,D.,& Verschaffel,L.(2005).Not everything is proportional:Effects of age and problem type on propensities for overgeneralization.Cognition and Instruction,23(1),57-86. [39] Van Dooren,W.,De Bock,D.,Vleugels,K.,&Verschaffel,L.(2011).Word problem classification:A promising modelling task at the elementary level.In G.Kaiser.,W.Blum.,R.Borromeo Ferri.,&G.Stillman(Eds.),Trends in teaching and learning of mathematical modeling.(International perspectives on the teaching and learning of mathematical modeling,Vol.1,pp.47-55).New York:Springer. [40] Vergnaud,G.(2009).The theory of conceptual fields.Human Development,52(2),83-94. [41] Vygotsky,L.S.(1978).Interaction between learning and development(M.Lopez-Morillas,Trans.).In M.Cole,V.John-Steiner,S. Scribner,&E.Souberman(Eds.),Mind in society:The development of higher psychological processes(pp.79-91).Cambridge,MA: Harvard University Press. [42] Wong,M.(2010).Equivalent fractions:Developing a pathway of students'acquisition of knowledge and understanding.In L.Sparrow, B.Kissane,&C.Hurst(Eds.),Shaping the future of mathematics education.(Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia,PP.673-680).Fremantle:MERGA. [43] Wong,M.(2009).Assessing students'knowledge and conceptual understanding of fraction equivalence.Unpublished doctoral thesis, University of Sydney,NSW,Australia. [44] Wong,M.,&Evans,D.(2007).Students'conceptual understanding of equivalent fractions.In J.Watson&K.Beswick(Eds.),Mathematics:Essential research,essential practice.(Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia,Vol.2,pp.824-833).Fremantle:MERGA. [45] Xu,F.,&Spelke,E.(2000).Large number discrimination in 6-month-old infants.Cognition,74,B1-B11. [46] 教育部.(2001).全日制义务教育数学课程标准(实验稿).北京:北京师范大学出版社. [47] 刘春晖,辛自强.(2010).五—八年级学生分数概念的发展.数学教育学报,19(5),59-63. [48] 苏洪雨.(2007).七年级学生分数学习情况的调查研究.数学教育学报,16(4),48-51. [49] 詹婉华,吕玉琴.(2004).国小高年级儿童分数概念量表之设计研究.教育科学学刊,12(2),241-263. |
[1] | 梁丹丹, 闫晓民, 葛志林. 4~8岁汉语高功能自闭症儿童基于语言线索的情绪识别能力发展研究[J]. 心理发展与教育, 2024, 40(2): 169-175. |
[2] | 涂燊, 梁秋霞, 朱思施, 李昌俊, 刘庆英, 周亚娟. 序列语义的类别一致性关系能否进行无意识整合?[J]. 心理发展与教育, 2021, 37(1): 10-18. |
[3] | 刘星泽, 陈明慧, 崔佳伟, 赵光. 真实场景视觉搜索中的背景线索效应特点与机制[J]. 心理发展与教育, 2019, 35(4): 504-512. |
[4] | 刘敏, 李赛男, 刘妮娜, 王正光, 闫国利. 2~5年级小学生汉字识别中预视效应的发展研究[J]. 心理发展与教育, 2019, 35(4): 447-457. |
[5] | 马小凤, 周爱保, 杨小娥. 线索强度:检验提取练习效应内部机制的重要变量[J]. 心理发展与教育, 2017, 33(3): 313-320. |
[6] | 赵广平, 周楚, 郭秀艳. 基于熟悉性的项目间语义关系再认[J]. 心理发展与教育, 2015, 31(4): 385-392. |
[7] | 蒋军, 夏依婷, 陈安涛, 陈雪飞, 张庆林, 张蔚蔚. 无意识冲突的发生机制:基于Stroop范式的探讨[J]. 心理发展与教育, 2013, 29(2): 139-146. |
[8] | 莫书亮, 苏彦捷. 3~4岁儿童的错误信念理解:补语句法, 语义理解和工作记忆的作用[J]. 心理发展与教育, 2009, 25(3): 15-19,25. |
[9] | 李甦, 李文馥, 杨玉芳. 3~6岁儿童绘画故事能力的发展[J]. 心理发展与教育, 2005, 21(3): 1-6. |
[10] | 郭桃梅, 彭聃龄. 初中和高中生英语语义通达机制的比较[J]. 心理发展与教育, 2003, 18(2): 14-18. |
[11] | 吴薇莉. 5-12岁儿童短时距守恒性年龄特征的初步研究[J]. 心理发展与教育, 1999, 15(2): 17-22. |
|