心理发展与教育 ›› 2016, Vol. 32 ›› Issue (2): 129-138.doi: 10.16187/j.cnki.issn1001-4918.2016.02.01

• 认知与社会性发展 •    下一篇

学前儿童近似数量系统敏锐度与符号数学能力的关系

牛玉柏1, 时冉冉1, 曹贤才2   

  1. 1. 浙江理工大学心理学系, 杭州 310018;
    2. 北京师范大学发展心理研究所, 北京 100875
  • 出版日期:2016-03-15 发布日期:2016-03-15
  • 通讯作者: 曹贤才,E-mail:caoxiancai@mail.bnu.edu.cn E-mail:caoxiancai@mail.bnu.edu.cn
  • 基金资助:
    浙江省教育厅高等学校访问学者专业发展项目(FX2013032)。

Preschool Children's Approximate Number System Acuity and Symbolic Number Abilities

NIU Yubai1, SHI Ranran1, CAO Xiancai2   

  1. 1. Department of Psychology, Zhejiang Sci-tech University, Hangzhou 310018;
    2. Institute of Developmental Psychology, Beijing Normal University, Beijing 100875
  • Online:2016-03-15 Published:2016-03-15

摘要: 选取杭州市122名学前儿童(3~6岁)为被试,以点数比较任务及点数异同任务测量幼儿的近似数量系统敏锐度,以数数测验、基数测验、符号数字知识测验及简单计算来测量幼儿的符号数学能力,以此考察学前儿童近似数量系统敏锐度的发展及与符号数学能力的关系。结果发现:(1)随年龄增长,学前儿童的近似数量加工的敏锐度逐渐提高;(2)点数比较任务与点数异同任务均适合测量学前儿童近似数量系统敏锐度,但儿童完成点数比较任务的正确率要高于点数异同任务的正确率;(3)在抑制控制、短时记忆、工作记忆和言语测验成绩被控制后,根据点数比较任务计算的韦伯系数能显著预测学前儿童的基数和符号数字知识测验分数,总正确率能显著预测学前儿童的数数、基数、符号数字知识测验分数;(4)点数异同任务中只有点数不同试次下的正确率能显著预测学前儿童的符号数字知识测验分数。

关键词: 学前儿童, 近似数量系统, 韦伯系数, 点数比较任务, 点数异同任务

Abstract: A hundred and twenty-two children(3-to 6-year-old) participated in 11 tasks measuring ANS acuity, symbolic number abilities, inhibitory control, short memory, working memory and receptive vocabulary. Results showed that(1) Preschool children's ANS acuity increases by their age. (2) Both of the same different task and the non-symbolic magnitude comparison task can measure 3-to 6-year-old preschool children's ANS acuity. Their performances in the non-symbolic magnitude comparison task were better than that in the same-different task. (3) The Weber Faction calculated by non-symbolic magnitude comparison task significantly correlated with cardinality proficiency and symbolic number knowledge, and the accuracy of this task correlated with counting skills, cardinality proficiency and symbolic number knowledge, when short memory, working memory, inhibitory control and receptive vocabulary were controlled. (4) The accuracy of different trails in the same-different task correlated with symbolic number knowledge.

Key words: preschool children, approximate number system, Weber Fraction, non-symbolic magnitude comparison task, same different task

中图分类号: 

  • B844
Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences, 102(39), 14116-14121.
Cantlon, J., Fink, R., Safford, K., & Brannon, E. M. (2007). Heterogeneity impairs numerical matching but not numerical ordering in preschool children. Developmental Science,10(4), 431-440.
Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83-91.
Dewind, N. K., & Brannon, E. M. (2012,). Malleability of the approximate number system:Effects of feedback and training. Frontiers in Human Neuroscience.68(6), 1-10.
Diamond, A., & Taylor, C. (1996). Development of an aspect of executive control:Development of the abilities to remember what I said and to "Do as I say, not as I do." Developmental Psychobiology, 29(4), 315-334.
Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes:Contributions of inhibitory control. Developmental Science, 16(1), 136-148.
Gebuis, T., & van der Smagt, M. J. (2011). False approximations of the approximate number system? Plos One, 6(10), e25405.
Gerstadt, C. L., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action:Performance of children 3.5-7 years old on a stroop-like day-night test. Cognition, 53(2), 129-153.
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V., et al. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. Plos One, 8(6), e67374.
Ginsburg, H. P., & Baroody, A. J. (1990). The Test of Early Mathematics Ability (2nd ed.). Austin, TX:Pro-Ed.
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the "Number Sense":The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457-1465.
Halberda, J., L, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120.
Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-669.
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols:The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29.
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107.
Jordan N. C., Kaplan D., Ramineni C., & Locuniak, M. N. (2009). Early math matters:Kindergarten number competence and later mathematics outcomes. Developmental Psychology,45(3), 850-867.
Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children's mathematical knowledge:The effect of teacher"math talk."Developmental Psychology, 42(1), 59-69.
Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013a). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829-838.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013b). Is Approximate Number Precision a Stable Predictor of Math Ability? Learning and Individual Differences, 25(2), 126-133.
Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737-18742.
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261.
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237.
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). Preschoolers' precision of the approximate number system predicts later school mathematics performance. Plos One, 6(9), e23749.
Mussolin, C., Nys, J., Content, A., & Leybaert, J. (2014). Symbolic number abilities predict later approximate number system acuity in preschool children. Plos One,9(3), e91839.
Mussolin, C., Nys, J., & Leybaert, J. (2012). Relationships between approximate number system acuity and early symbolic number abilities. Trends in Neuroscience and Education, 1(1), 21-31.
Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students' basic number processing and arithmetic skills. Learning and Instruction, 23, 125-135.
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503.
Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect:The same-different task. Journal of Cognitive Psychology, 23(1), 112-120.
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749-750.
马俊巍. (2012). 学龄儿童近似数量表征的研究. 硕士学位论文. 东北师范大学.
王乃弋, 罗跃嘉, 李红. (2006). 两种数量表征系统. 心理科学进展,14(4), 610-617.
张树东,董奇.(2004)发展性计算障碍的诊断与矫治.中国特殊教育,(2),21-25.
[1] 冷欣怡, 苏萌萌, 李文玲, 杨秀杰, 邢爱玲, 张湘琳, 舒华. 家庭环境与农村儿童早期语言发展的关系[J]. 心理发展与教育, 2024, 40(1): 8-18.
[2] 程阳春, 黄瑾. 近似数量系统与数学能力的关系:一项元分析[J]. 心理发展与教育, 2023, 39(3): 379-390.
[3] 白荣, 闫嵘, 王千, 李叶, 邢淑芬. 学前儿童执行功能与问题行为的关系:情境和性别的特异性[J]. 心理发展与教育, 2022, 38(1): 35-44.
[4] 张光珍, 梁淼, 梁宗保. 父母教养方式影响学前儿童社会适应的追踪研究:自我控制的中介作用[J]. 心理发展与教育, 2021, 37(6): 800-807.
[5] 占淑玮, 杨宁, 赵必华. 留守学前儿童接受性语言能力与社会退缩的关系:有调节的中介模型[J]. 心理发展与教育, 2021, 37(6): 834-844.
[6] 王英杰, 李燕, 吴凡. 家庭功能与学前儿童行为问题的关系:依恋回避和社交焦虑的多重中介作用[J]. 心理发展与教育, 2021, 37(1): 76-83.
[7] 张凡, 赵德懋, 刘霞, 白荣, 张明亮, 邢淑芬. 父母教养与MAOA基因rs6323多态性对学前儿童外化问题的共同作用[J]. 心理发展与教育, 2020, 36(6): 659-667.
[8] 李倩倩, 姚力宁, 梁金军, 邢淑芬. 电视暴力对不同外倾性气质学前儿童社会行为的差异化影响——“一般攻击模型”与“催化剂模型”的理论之争[J]. 心理发展与教育, 2020, 36(5): 545-554.
[9] 于晓, 王红梅, 陈英和, 刘瑞曙, 韩瑽瑽, 韩敏, 张涵, 刘静. 分心抑制和关系整合对学前儿童类比推理的影响[J]. 心理发展与教育, 2020, 36(4): 385-393.
[10] 姚力宁, 高金帆, 贺立竞, 高鑫, 崔慧欣, 邢淑芬. 睡眠时间参数对学前儿童问题行为的影响:消极情绪性的调节作用[J]. 心理发展与教育, 2019, 35(6): 710-718.
[11] 王静梅, 张义宾, 郑晨烨, 卢英俊, 秦金亮. 3~6岁儿童执行功能子成分发展的研究[J]. 心理发展与教育, 2019, 35(1): 1-10.
[12] 陈丽君, 王欣, 赵陵波, 陈昕, 王益文. 面孔二态性对学前儿童信任行为的影响——来自人格标签的解释[J]. 心理发展与教育, 2018, 34(5): 513-522.
[13] 张润竹, 赵一萌, 秦荣彩, 王振宏. 学前儿童迷走神经活动与情绪反应、情绪调节及冲动性的关系[J]. 心理发展与教育, 2018, 34(1): 1-9.
[14] 梁宗保, 胡瑞, 张光珍, 邓慧华, 夏敏. 母亲元情绪理念与学前儿童社会适应的相互作用关系[J]. 心理发展与教育, 2016, 32(4): 394-401.
[15] 田丽丽, 周欣, 康丹, 徐晶晶, 李正清. 5~6岁不同数学能力水平儿童的执行功能差异研究[J]. 心理发展与教育, 2016, 32(1): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!