心理发展与教育 ›› 2019, Vol. 35 ›› Issue (3): 329-337.doi: 10.16187/j.cnki.issn1001-4918.2019.03.10

• 教与学心理 • 上一篇    下一篇

教学设计中的成绩表现和心流体验:基于认知负荷视角

王舒1, 殷悦1, 王婷2, 刘国芳3, 罗俊龙1   

  1. 1. 上海师范大学教育学院心理系, 上海 200234;
    2. 上海城市建设工程学校, 上海 200232;
    3. 中国人民解放军国防大学政治学院, 上海 200433
  • 发布日期:2019-06-19
  • 通讯作者: 罗俊龙,E-mail:luo831023@163.com E-mail:luo831023@163.com
  • 基金资助:
    教育部人文社会科学研究青年基金项目“教学设计中认知负荷对心流体验的影响研究”(19YJC190015)。

The Learning Performance and Flow Experience in Instructional Design, Based on Cognitive Load Theory

WANG Shu1, YIN Yue1, WANG Ting2, LIU Guofang3, LUO Junlong1   

  1. 1. Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200234;
    2. Shanghai City Construction Engineering School, Shanghai 200433;
    3. College of Politics, National Defence University, Shanghai 200433
  • Published:2019-06-19

摘要: 教学设计是为优化教学效果而形成的教学实施方案。为提高学习表现,认知负荷理论认为在组织教学设计时需考虑内、外认知负荷两大因素,但少有研究关注学生在学习过程中的体验。本研究通过单词复合性操纵内在负荷,通过呈现方式操纵外在负荷,探究两类负荷对心流体验及表现的影响。结果发现,内在负荷对心流及表现均有影响,外在负荷仅在低水平组表现出对心流及表现的影响,另外内外负荷在低水平组的表现上存在交互作用。结果表明,教学设计中的内在负荷是影响心流及表现的稳定因素,外在负荷不仅受知识水平影响,其对表现的有效性还受内在负荷的调节。

关键词: 教学设计, 认知负荷, 成绩表现, 心流体验, 知识水平

Abstract: Instructional design is a teaching plan which guarantees teaching efficiency and progressing. To improve learning performance, cognitive load theory implies that there are two broads of sources that need to be considered when designing instruction:intrinsic and extraneous cognitive loads. However, less research has focused on learner's emotion or feeling during the learning process. As an optimal experience, flow could make learner immersed on learning materials, meanwhile enjoy learning activity and would like to engage in learning activity again. So the current research manipulates both intrinsic and extraneous cognitive load by the type of English vocabulary (compound word and non-compound word), the manner in which the material was presented (text only or text combined with picture) to see whether the instruction design is effective on flow experience and learning performance. The results showed that intrinsic cognitive load had a main effect both in learning performance and flow experience among all participants, while extraneous cognitive load had a main effect in learning performance and a slightly main effect in flow experience only when participants had lower expertise of English. Besides, there was an interaction between two dependent variables in learning performance in lower expertise group. The results indicated that intrinsic cognitive load had a persistent effect on flow experience and learning performance. Beyond that, whether the presenting-mode of materials is effective also depends on the amount of intrinsic cognitive load.

Key words: instructional design, cognitive load, learning performance, flow experience, levels of expertise

中图分类号: 

  • G442
Blayney, P., Kalyuga, S., & Sweller, J. (2015). The impact of complexity on the expertise reversal effect:experimental evidence from testing accounting students. Educational Psychology, 36(10), 1868-1885.
Carpenter, S. K., & Olson, K. M. (2012). Are pictures good for learning new vocabulary in a foreign language? only if you think they are not. Journal of Experimental Psychology Learning Memory & Cognition, 38(1), 92-101.
Chang, C. C., Liang, C., Chou, P. N., & Lin, G. Y. (2017). Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? perspectives from multimedia and media richness. Computers in Human Behavior, 71, 218-227.
Chen, O., Kalyuga, S., & Sweller, J. (2016). The expertise reversal effect is a variant of the more general element interactivity effect. Educational Psychology Review, 29, 1-13.
Cho, M. (2018). Task complexity and modality:exploring learners' experience from the perspective of flow. Modern Language Journal, 102(1), 162-180.
Cseh, G. M., Phillips, L. H., & Pearson, D. G. (2016).Mental and perceptual feedback in the development of creative flow. Consciousness & Cognition, 42, 150-161.
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco, CA:Jossey-Bass.
Deason, R. G., Nadkarni, N. A., Tat, M. J., Flannery, S., Frustace, B., Ally, B. A., & Budson, A. E. (2017).The use of metacognitive strategies to decrease false memories in source monitoring in patients with mild cognitive impairment. Cortex, 91, 287-296.
Eklund, R. C. (1996). Preparing to compete:a season-long investigation with collegiate wrestlers. Sport Psychologist, 10(2), 111-131.
Engeser, S., & Schiepe-Tiska, A. (2012). Advances in Flow Research. In Engeser, S. (Ed.), Historical Lines and an Overview of Current Research on Flow. (1-22). New York, Springer.
Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation & Emotion, 32(3), 158-172.
Hanham, J., Leahy, W., & Sweller, J. (2017). Cognitive load theory, element interactivity, and the testing and reverse testing effects. Applied Cognitive Psychology, 31(3), 265-280.
Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn:an empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179.
Hawlitschek, A., & Joeckel, S. (2017). Increasing the effectiveness of digital educational games:the effects of a learning instruction on students' learning, motivation and cognitive load. Computers in Human Behavior, 72, 79-86.
Heutte, J., Fenouillet, F., Kaplan, J., Martin-Krumm, C., & Bachelet, R. (2016). Flow Experience. Empirical Research and Applications. In. Harmat, L., Andersen, F. O., Ullén, F., Wright, J., &Sadlo, G. (Eds.). The eduflow model:a contribution toward the study of optimal learning environments (125-178). Switzerland, Springer.
Hockley, W. E., & Bancroft, T. (2011). Extensions of the picture superiority effect in associative recognition. Canadian Journal of Experimental Psychology, 65(4), 236-244.
Hsieh, Y. H., Lin, Y. C. & Hou, H. C. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, 24(1), 178-193.
Hung, J., Edmonds, L. A., & Reilly, J. (2016). Words speak louder than pictures for action concepts:an eyetracking investigation of the picture superiority effect in semantic categorisation. Language, Cognition & Neuroscience, 31(9), 1150-1166
Kalyuga, S., Yin, K. L., & Lee, C. H. (2013). Expertise reversal effect in reading chinese texts with added causal words. Instructional Science, 41(3), 481-497.
Kiili, K., Lainema, T., Freitas, S. D., & Arnab, S. (2014). Flow framework for analyzing the quality of educational games. Entertainment Computing, 5(4), 367-377.
Landhäuβer, A., & Keller, J. (2012). Advances in Flow Research. In Engeser, S. (Ed.), Flow and its affective, cognitive, and performance-related consequences (65-85). New York, Springer.
Leahy, W., & Sweller, J. (2016). Cognitive load theory and the effects of transient information on the modality effect. Instructional Science, 44(1), 107-123.
Liu, T. Y. (2016). Using educational games and simulation software in a computer science course:learning achievements and student flow experiences. Interactive Learning Environments, 24(4), 1-21.
Mankin, J. L., Christopher, T., Branigan, H. P., & Julia, S. (2016). Processing compound words:evidence from synaesthesia. Cognition, 150, 1-9.
Meng, L., Pei, G., Zheng, J., & Ma, Q. (2016). Close games versus blowouts:optimal challenge reinforces one's intrinsic motivation to win. International Journal of Psychophysiology, 110, 102-108.
Renkl, A., & Scheiter, K. (2015). Studying visual displays:how to instructionally support learning. Educational Psychology Review, 29, 1-23.
Schrader, C., & Bastiaens, T. J. (2012). The influence of virtual presence:effects on experienced cognitive load and learning outcomes in educational computer games. Computers in Human Behavior, 28(2), 648-658.
Seufert, T. (2018). The interplay between self-regulation in learning and cognitive load. Educational Research Review. 24, 116-129.
Sharek, D., & Wiebe, E. (2014). Measuring video game engagement through the cognitive and affective dimensions. Simulation & Gaming, 45(4-5), 569-592.
Sithole, S. T. M. (2017). Enhancing students understanding of introductory accounting by integrating split-attention instructional material. Accounting Research Journal, 30(3), 283-300.
Sun, J. C.-Y., Kuo, C.-Y., Hou, H.-T., & Lin, Y.-Y.. (2017). Exploring learners' sequential behavioral patterns, flow experience, and learning performance in an anti-phishing educational game. Educational Technology & Society, 20(1), 45-60.
Sweller, J., Ayres, P., & Kalyuga, S. (2011).Cognitive Load Theory. In. J. M. Spector & Susanne P. L. (Eds.). New York, Springer.
Sweller, J., Ayres, P., & Kalyuga, S. (2011).Cognitive Load Theory. In. J. M. Spector & Susanne P. L. (Eds.), Intrinsic and Extraneous Cognitive Load (57-69). New York, Springer.
Sweller, J., Ayres, P., & Kalyuga, S. (2011).Cognitive Load Theory. In. J. M. Spector & Susanne P. L. (Eds.), The Element Interactivity Effect (193-201).New York, Springer.
Vuorre, M., & Metcalfe, J. (2016). The relation between the sense of agency and the experience of flow. Consciousness & Cognition, 43, 133-142.
Wirzberger, M., Beege, M., Schneider, S., Nebel, S., & Rey, G. D. (2016). One for all?! simultaneous examination of load-inducing factors for advancing media-related instructional research. Computers & Education, 100, 18-31.
刘慧云. (2013). 《走遍美国》词汇要求调查. 广东外语外贸大学学报. (3), 84-87. (2013, 5月)
刘微娜. (2010). 《简化状态流畅量表》和《简化特质流畅量表》中文版修订.体育科学, 30(12), 64-70.
任俊, 施静, 马甜语. (2009). Flow研究概述. 心理科学进展, 17(1), 210-217.
王春华. (2014). 教学设计的理性及其限度 (博士学位论文). 山东师范大学, 济南.
张冬梅, 路海东, 祖雅桐. (2016). 认知负荷视角下的知识反转效应.心理科学进展, 24(4), 501-509.
周爱保, 马小凤, 李晶, 崔丹. (2013). 提取练习在记忆保持与迁移中的优势效应:基于认知负荷理论的解释.心理学报, 45(8), 849-859.
[1] 于晓, 张和颐, 戚玥, 陈英和, 刘浩宁, 赵煜燨, 乔学文. 抑制控制在类比映射发展中的作用:认知负荷的影响[J]. 心理发展与教育, 2023, 39(1): 1-11.
[2] 王燕青, 杨晓梦, 赵婷婷, 高春颍, 张洋, 赵庆柏, 王福兴, 胡祥恩. 分段是视频学习的有效方式吗?[J]. 心理发展与教育, 2022, 38(4): 600-608.
[3] 陈丽君, 刘丽敏, 林岳阳, 张玲燕. 虚拟学习环境下图形加工的认知负荷研究[J]. 心理发展与教育, 2021, 37(5): 619-627.
[4] 袁娟娟, 杨炀, 郑志伟, 刘萍萍. 图文横排促进低熟悉词汇再认:基于8岁儿童和成人证据[J]. 心理发展与教育, 2021, 37(4): 525-538.
[5] 刘勤学, 张聚媛, 林悦. 大学生智能手机成瘾与抑制控制能力的关系:手机位置和认知负荷的调节作用[J]. 心理发展与教育, 2021, 37(2): 257-265.
[6] 龚德英, 刘电芝, 张大均. 概述和音乐对认知负荷和多媒体学习的影响[J]. 心理发展与教育, 2008, 24(1): 83-87.
[7] 曹宝龙, 刘慧娟, 林崇德. 认知负荷对小学生工作记忆资源分配策略的影响[J]. 心理发展与教育, 2005, 21(1): 36-42.
[8] 张景焕, 金盛华, 陈秀珍. 小学教师课堂教学设计能力发展特点及影响因素[J]. 心理发展与教育, 2004, 20(1): 59-63.
[9] 王雁. 智力残疾儿童健康知识掌握状况的调查研究[J]. 心理发展与教育, 1998, 14(3): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!