心理发展与教育 ›› 2025, Vol. 41 ›› Issue (5): 750-760.doi: 10.16187/j.cnki.issn1001-4918.2025.05.15

• 理论探讨与进展 • 上一篇    

多维潜变量建模的发展:层次性和交叉性的双视角

顾红磊1,2, 温忠麟3   

  1. 1. 湖南师范大学教育科学学院心理系, 长沙 410081;
    2. 认知与人类行为湖南省重点实验室, 长沙 410081;
    3. 华南师范大学心理应用研究中心/心理学院, 广州 510631
  • 发布日期:2025-09-15
  • 通讯作者: 温忠麟 E-mail:wenzl@scnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32171091);湖南省自然科学基金青年项目(2021JJ40336)。

The Development of Multidimensional Latent Variable Modeling: Dual Perspectives of Hierarchy and Overlapping

GU Honglei1,2, WEN Zhonglin3   

  1. 1. Department of Psychology, School of Educational Science, Hunan Normal University, Changsha 410081;
    2. Cognition and Human Behavior Key Laboratory of Hunan Province, Changsha 410081;
    3. Center for Studies of Psychological Application/School of Psychology, South China Normal University, Guangzhou 510631
  • Published:2025-09-15

摘要: 在心理、教育、管理等社科领域,经常涉及多维潜变量。多维潜变量建模方法经历了从简单到精确、贝叶斯统计与频率统计并行的发展过程。本文首先回顾和评介了多维潜变量的传统建模方法,其次概述了基于层次性和交叉性双视角的双因子探索性结构方程模型(bifactor-ESEM)和双因子贝叶斯结构方程模型(bifactor-BSEM)两种新近建模方法的特点以及在心理学等社科研究中的应用,然后总结出一个兼顾简洁性和精确性的多维潜变量建模流程。最后通过一个实例对多维潜变量的各种建模方法进行了演示。

关键词: 双因子模型, 探索性结构方程模型, 贝叶斯结构方程模型, 双因子探索性结构方程模型, 双因子贝叶斯结构方程模型

Abstract: Empirical psychological, educational, and managemental researches are frequently confronted with multidimensional latent variables (e.g., emotional intelligence, job burnout). The measurement model of multidimensional latent variables is established through confirmatory factor analysis (CFA), bifactor models, exploratory structural equation models (ESEM), bayesian structural equation models (BSEM), bifactor exploratory structural equation models (bifactor-ESEM), and bifactor Bayesian structural equation models (bifactor-BSEM). BSEM and bifactor-BSEM models are developed within the Bayesian statistical framework, while other models are proposed on the base of frequency statistics. Although domestic scholars are familiar with CFA and have a certain understanding of bifactor model, ESEM and BSEM, they know little about bifactor-ESEM and bifactor-BSEM. The latter two models not only allow the coexistence of global and specific constructs (i.e., both general and specific factors in the models), but also incorporate the effects of non-target subdomains on items (i.e., cross-loadings between specific factors). First, this study reviews and comments on the traditional modeling methods of multidimensional latent variables. Second, we introduce the characteristics of bifactor-ESEM and bifactor-BSEM and their applications in social science research (e.g., psychology). Third, a flow chart of multidimensional latent variable modeling is presented, which balances the simplicity and the precision. Finally, an empirical example is illustrated to demonstrate the use of various modeling methods of multidimensional latent variables.

Key words: bifactor model, ESEM, BSEM, bifactor-ESEM, bifactor-BSEM

中图分类号: 

  • B844
Asparouhov, T. & Muthén, B. (2009). Exploratory structural equation modeling.Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 397-438.
Asparouhov, T., & Muthén, B. (2021). Advances in Bayesian model fit evaluation for structural equation models.Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 1-14.
Biderman, M. D., Nguyen, N. T., Cunningham, C. J., & Ghorbani, N. (2011). The ubiquity of common method variance: The case of the Big Five. Journal of Research in Personality, 45(5), 417-429.
Bollen, K. A. (1989).Structural equations with latent variables. New York, NY: Wiley.
Cai, L. (2010). A two-tier full-information item factor analysis model with applications.Psychometrika, 75(4), 581-612.
Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J. P., & Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: A comparison of the bifactor model to other approaches.Journal of Personality, 80(1), 219-251.
Church, A. T., & Burke, P. J. (1994). Exploratory and confirmatory tests of the big five and Tellegen’s three- and four-dimensional models.Journal of Personality and Social Psychology, 66(1), 93-114.
De Beer, L. T., & Morin, A. J. S. (2022). (B)ESEM invariance syntax generator for Mplus. Retrieved from https://statstools.app/b_esem
De Beer L. T., & Van Zyl, L. E. (2019). ESEM code generator for Mplus. Retrieved from https://www.surveyhost.co.za/esem/
Dombrowski, S. C., Golay, P., Mcgill, R. J., & Canivez, G. L. (2018). Investigating the theoretical structure of the DAS-II core battery at school age using Bayesian structural equation modeling.Psychology in the Schools, 55(2), 190-207.
Falkenström, F., Hatcher, R. L., Skjulsvik, T., Larsson, M. H., & Holmqvist, R. (2015). Development and validation of a 6-item working alliance questionnaire for repeated administrations during psychotherapy.Psychological Assessment, 27(1), 169-183.
Finney, S. J., & DiStefano, C. (2013). Non-normal andcategorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 439-492). Greenwich, CO: IAP.
Garn, A. C., Morin, A. J., & Lonsdale, C. (2019). Basic psychological need satisfaction toward learning: A longitudinal test of mediation using bifactor exploratory structural equation modeling.Journal of Educational Psychology, 111(2), 354-372.
Gegenfurtner, A. (2022). Bifactor exploratory structural equation modeling: A meta-analytic review of model fit.Frontiers in Psychology, 13, 1037111. https://doi.org/10.3389/fpsyg.2022.1037111
Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: G as superordinate or breadth factor?Psychology Science Quarterly, 50, 21-43.
Gillet, N., Caesens, G., Morin, A. J., & Stinglhamber, F. (2019). Complementary variable-and person-centered approaches to the dimensionality of work engagement: A longitudinal investigation.European Journal of Work and Organizational Psychology, 28(2), 239-258.
Golay, P., Reverte, I., Rossier, J., Favez, N., & Lecerf,T. (2013). Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling. Psychological Assessment, 25(2), 496-508.
Gu, H., Wen, Z., & Fan, X. (2017). Structural validity of theMachiavellian Personality Scale: A bifactor exploratory structural equation modeling approach. Personality and Individual Differences, 105, 116-123.
Gu, H., Wen, Z., & Fan, X. (2020). Investigating the multidimensionality of the work-related flow inventory (WOLF): A bifactor exploratory structural equation modeling framework.Frontiers in Psychology, 11, 740. https://doi.org/10.3389/fpsyg.2020.00740
Gu, H., Wen, Z., & Hau, K. T. (2023). Bifactor exploratory structural equation models versus traditional approaches in predicting external criteria.Structural Equation Modeling: A Multidisciplinary Journal, 30(5), 778-788.
Guay, F., Morin, A. J., Litalien, D., Howard, J. L., & Gilbert, W. (2021). Trajectories of self-determined motivation during the secondary school: A growth mixture analysis.Journal of Educational Psychology, 113(2), 390-410.
Guo, J., Marsh, H. W., Parker, P. D., Dicke, T., Luedtke, O., & Diallo, T. M. O. (2019). A systematic evaluation and comparison between exploratory structural equation modeling and Bayesian structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 529-556.
Howard, J. L., Gagné, M., Morin, A. J. S., & Forest, J. (2018).Using bifactor exploratory structural equation modeling to test for a continuum structure of motivation. Journal of Management, 44(7), 2638-2664.
Hyland, P. (2015). Application of bifactor models in criminal psychology research: A guide to researchers. Journal of Criminal Psychology, 5(2), 65-74.
Jovanovic, V., Gavrilov-Jerkovic, V., & Lazic, M. (2021). Can adolescents differentiate between depression, anxiety and stress? Testing competing models of the depression anxiety stress scales (DASS-21).Current Psychology, 40, 6045-6056.
Kaplan, D., & Depaoli, S. (2012). Bayesian structural equation modeling. In R. Hoyle (Ed.),Handbook on structural equation modeling. New York, NY: Guilford Press.
Kim, M., & Wang, Z. (2022). Factor structure of the PANASwith Bayesian structural equation modeling in a Chinese sample. Evaluation & the Health Professions, 45(2), 157-167.
Lee, S. Y. (2007).Structural equation modeling: A Bayesian approach. Chichester, UK: Wiley.
Liang, X., Yang, Y., & Cao, C. (2020). The performance of ESEM and BSEM in structural equation models with ordinal indicators.Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 874-887.
Mai, Y., Zhang, Z., & Wen, Z. (2018). Comparing exploratory structural equation modeling and existing approaches for multiple regression with latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 737-749.
Marsh, H. W., Fraser, M. I., Rakhimov, A., Ciarrochi, J., & Guo, J. (2023). The bifactor structure of the Self-Compassion Scale: Bayesian approaches to overcome exploratory structural equation modeling (ESEM) limitations. Psychological Assessment, 35(8), 674-691.
Morin, A. J. S. (2023). Exploratory structural equation modeling. In R. H. Hoyle (Ed.),Handbook of structural equation modeling (2nd ed., pp. 503-524). Guilford.
Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2016). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling: A Multidisciplinary Journal, 23, 116-239.
Morin, A. J. S., Boudrias, J. S., Marsh, H. W., McInerney, D. M., Dagenais-Desmarais, V., Madore, I., & Litalien, D. (2017). Complementary variable- and person-centered approaches to the dimensionality of psychometric constructs: Application to psychological wellbeing at work.Journal of Business and Psychology, 32(4), 395-419.
Morin, A. J. S., Marsh, H. W., & Nagengast, B. (2013). Exploratory structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 395-436). Greenwich, CT: Information Age.
Morin, A. J. S., Myers, N. D., & Lee, S. (2020). Modern factor analytic techniques: Bifactor models, exploratory structural equation modeling (ESEM) and bifactor-ESEM. In G. Tenenbaum, & Eklund, R. C. (Eds.),Handbook of Sport Psychology, 4th Edition, Vol. 2 (pp. 1044-1073). Wiley.
Muthén, B., & Asparouhov, T. (2012a). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
Muthén, B., & Asparouhov, T. (2012b). Rejoinder to MacCallum, Edwards, and Cai (2012) and Rindskopf (2012): Mastering a new method. Psychological Methods, 17(3), 346-353.
Reis, D. (2019). Further insights into the German version of the Multidimensional Assessment of Interoceptive Awareness (MAIA): Exploratory and Bayesian structural equation modeling approaches.European Journal of Psychological Assessment, 35(3), 317-325.
Smid, S. C., & Winter, S. D. (2020). Dangers of the defaults: A tutorial on the impact of default priors when using Bayesian SEM with small samples. Frontiers in Psychology, 11, 611963. https://doi.org/10.3389/fpsyg.2020.611963
Spreitzer, G. M. (1995). Psychological empowerment in the workplace: Dimensions, measurement, and validation.Academy of Management Journal, 38(5), 1442-1465.
Szabó, M. (2010). The short version of the depression anxiety stress scales (DASS-21): Factor structure in a young adolescent sample. Journal of Adolescence, 33(1), 1-8. https://doi.org/10.1016/j.adolescence.2009.05.014
Wei, X., Huang, J., Zhang, L., Pan, D., & Pan, J. (2022). Evaluation and comparison of SEM, ESEM, and BSEM in estimating structural models with potentially unknown cross-loadings.Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 327-338.
Xiao, Y., Liu, H., & Hau, K. T. (2019). A comparison of CFA, ESEM, and BSEM in test structure analysis.Structural Equation Modeling: A Multidisciplinary Journal, 26(5), 665-677.
Zhang, B., Luo, J., Sun, T., Cao, M., & Drasgow, F. (2023). Small but nontrivial: A comparison of six strategies to handle cross-loadings in bifactor predictive models.Multivariate Behavioral Research, 58(1), 115-132.
Zhang, B., Sun, T., Cao, M., & Drasgow, F. (2021). Using bifactor models to examine the predictive validity of hierarchical constructs: Pros, cons, and solutions.Organizational Research Methods, 24(3), 530-571.
顾红磊, 温忠麟. (2017). 多维测验分数的报告与解释: 基于双因子模型的视角. 心理发展与教育, 33(4), 504-512.
顾红磊, 温忠麟, 方杰. (2014). 双因子模型: 多维构念测量的新视角. 心理科学, 37(4), 973-979.
侯杰泰, 温忠麟, 成子娟. (2004). 结构方程模型及其应用. 北京: 教育科学出版社.
李超平, 李晓轩, 时勘, 陈雪峰. (2006). 授权的测量及其与员工工作态度的关系. 心理学报, 38(1), 99-106.
麦玉娇, 温忠麟. (2013). 探索性结构方程建模(ESEM): EFA和CFA 的整合. 心理科学进展, 21(5), 934-939.
王孟成, 邓俏文, 毕向阳. (2017). 潜变量建模的贝叶斯方法. 心理科学进展, 25(10), 1682-1695.
温忠麟, 汤丹丹, 顾红磊. (2019). 预测视角下双因子模型与高阶因子模型的一般性模拟比较. 心理学报, 51(3), 383-391.
张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812-1825.
[1] 马建苓, 刘畅. 错失恐惧对大学生社交网络成瘾的影响:社交网络整合性使用与社交网络支持的中介作用[J]. 心理发展与教育, 2019, 35(5): 605-614.
[2] 顾红磊, 温忠麟. 多维测验分数的报告与解释:基于双因子模型的视角[J]. 心理发展与教育, 2017, 33(4): 504-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!