心理发展与教育 ›› 2009, Vol. 25 ›› Issue (3): 113-118.

• 论文 • 上一篇    下一篇

小学四、五年级数学诊断性测验的编制——基于规则空间模型的方法

李峰, 余娜, 辛涛   

  1. 北京师范大学发展心理研究所, 北京100875
  • 出版日期:2009-07-15 发布日期:2009-07-15
  • 通讯作者: 辛涛, 北京师范大学心理学院教授.E-mail:xintao@bnu.edu.cn E-mail:xintao@bnu.edu.cn
  • 基金资助:
    教育部人文社科一般项目(05JAXLX003);国家自然科学基金面上项目:30670718

Development of Diagnostic Math Test for Grader 4 and Grader 5 based on the Rule Space Model

LI Feng, YU Na, XIN Tao   

  1. The Institute of Developmental Psychology, Beijing Normal University, Beijing 100875
  • Online:2009-07-15 Published:2009-07-15

摘要: 基于规则空间模型, 以小学四、五年级数学诊断性测验的编制为例, 探索了认知诊断理论背景下诊断性测验的编制方法。研究发现, 基于规则空间模型编制的诊断性测验具备优良的信效度, 尤其在结构效度上具有突出优势。应用该测验对1059名四、五年级学生进行诊断测验的结果显示:在整体上, 学生对整数、初级运算与应用掌握得较为巩固, 对量、统计、规律、高级运算掌握较差;在发展趋势上, 量、统计、规律、高级运算是四、五年级之间进步最快的属性。

关键词: 诊断性测验, 属性, 规则空间模型, Q矩阵

Abstract: Based on the rule space model.Diagnostic math test and compiled the diagnostic test for grader 4 and grader 5 was developed.The results revealed that the test not only had good reliability and validity but also provided abundant diagnostic information.According to the diagnostic results from the test which was administered to 1159 students, the grader 4 and grader 5 performed well on whole number, elementary operation and application;however, the attributes such as measure, statistics, searching for pattern and advanced operation were not well mastered.What is more, those not-well-mastered at ributes indicated the fastest growth between grade 4 and grade 5.

Key words: diagnostic test, attribute, rule space model, Q matrix

中图分类号: 

  • G449.1
[1] 辛涛.新课程背景下的学业评价:测量理论的价值.北京师范大学学报(社会科学版), 2006, 193(1):56-61.
[2] 辛涛.当前考试理论的进展.心理发展与教育, 2005, 增刊:63-68.
[3] Bush G W.No child left behind:education blueprint. Washington, DC:The Whit e House, 2001.
[4] 刘经兰, 戴海琦.小学四年级数学诊断性测验的编制与研究.心理学探新, 2003, 23(3):57-59.
[5] Birenbaum M, Kelly A, Tatsuoka K.Diagnosing knowledge states in algebra using the rule-space model.Journal for Research in Mathematics Education, 1993, 24(5):442-459.
[6] Tatsuoka K.Rule space:an approach for dealing wit h misconceptions based on item response theory.Journal of Educational Measurement, 1983, 20(4):345-354.
[7] Tatsuoka K.Item construction and psychometric models appropriate for constructed responses.In Bennett, R.E, Ward, W.C.Construction versus choice in cognitive measurement:issues in constructed response, performance testing, and portfolio assessment.Hillsdal e, NJ:Erlbaum, 1993:107-133.
[8] 朱智贤, 林崇德.思维发展心理学.北京:北京师范大学出版社, 1986:73-74.
[9] 全日制义务教育数学课程标准(实验稿).中华人民共和国教育部编制, 北京:北京师范大学出版, 2001.
[10] Tatsuoka K.Architecture of knowledge struct ures and cognitive diagnosis:a st atistical pattern recognition and classification approach.In Nichols.P, Chipman.S, Brennan.L.Cognitively diagnostic assessment. Hillsdale, NJ:Erlbaum, 1995:327-360.
[11] Buck G, Tatsuoka K, Kostin I.The subskills of reading:rule-space analysis of a multiple-choice test of second language reading comprehension.Language Learning, 1997, 47(3):423-466.
[12] Tatsuoka K, Corter J, Tatsuoka C.Patterns of diagnosed mathematical cont ent and process skills in TIMSS-R across a sample of 20 countries.American Educational Research Journal, 2004, 41:901-926.
[13] Cohen J.Statistical power analysis for t he behavioral science, second edition.Hillsdale, NJ:Lawrence Erlbaum Associates, 1988:19-26.
[14] 林崇德.小学儿童数概念与运算能力发展的研究.心理学报, 1981(3):289-298.
[15] 林崇德.发展心理学.北京:人民教育出版社, 1995:286-291.
[16] Schmidt W H, McKnight C C, Valverde G A, et al.Many visions, many aims(Vol.1).Dordrecht, The Netherlands:Kluwer Academic Publ ishers, 1997:3-10.
[1] 刘俊升, 周颖, 桑标. 儿童心理一致感量表中文版的心理测量学特征分析[J]. 心理发展与教育, 2010, 26(1): 87-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!