心理发展与教育 ›› 2009, Vol. 25 ›› Issue (1): 34-40,53.

• 论文 • 上一篇    下一篇

基于关系-表征复杂性模型的数学应用题表征能力测验

辛自强, 张莉   

  1. 北京师范大学发展心理研究所, 北京100875
  • 出版日期:2009-01-15 发布日期:2009-01-15
  • 通讯作者: 辛自强,北京师范大学发展心理研究所副教授,博士.E-mail:xinziqiang@sohu.com E-mail:xinziqiang@sohu.com
  • 基金资助:
    国家自然科学基金资助项目(30500162)

Measuring Students’ Representation Level on Arithmetic Word Problems:Based on the Relational-Representational Complexity Model

XIN Zi-qiang, ZHANG Li   

  1. Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
  • Online:2009-01-15 Published:2009-01-15

摘要: 基于关系-表征复杂性模型,从每道应用题涉及集合关系的嵌套程度角度事前分析其关系复杂性,编制了难度序列变化的应用题测验,以考察问题表征能力。采用该测验测查了四至七年级共165名学生,考察事前分析的合理性及表征水平随年龄的变化。结果表明:(1)事前分析对两个事后难度指标(错误率和Rasch模型分析的任务难度)的解释率分别为73.7%、78.7%;该测验得分与测查思维水平层次变化的SOLO分类测验上的得分有较高相关(r=0.65)。(2)四年级的应用题表征水平显著低于五、六、七年级,其他三个年级差异不显著;而且随着问题关系复杂性的增加,年级差异增大。这说明基于关系-表征复杂性模型的事前分析是合理的,据此编制的测验能够测查表征水平随年龄的变化。

关键词: 关系-表征复杂性模型, 等级复杂性, 应用题测验, 任务难度, 表征水平

Abstract: Students often have difficulty in solving arithmetic word problems.According to the relational-representational complexity model developed by Xin Ziqiang(2003-2008),the difficulty of an arithmetic word problem is determined partly by the relational complexity of variables in the problem.Based on the model,in the present study,a test consisting of 24 arithmetic word problems with different levels of relational complexity was designed for measuring children.The test was administrated to 165 students from grade 4,5,6 and 7.Results showed that:(1)prior analyzed problems'relational complexity(involving analysis of relational complexity of variables in every item)could predict most variance of task difficulty(73.7% of error percentage,78.7% of a difficulty index of Rasch model),and the criterion validity with the SOLO taxonomy test was 0.65;(2)students'representation levels on the test improved with grades. Such results indicted that the test is an effective and reliable instrument for measuring children's representation levels changing with grades.

Key words: the relational-representational complexity model, hierarchical complexity, word problem test, task difficulty, representation levels

中图分类号: 

  • B844.1
[1] Carpenter T P,Hiebert J,Moser J M.Problem structure and first-grade children's initial solution processes for simple addition and subtraction problems.Journal for Research in Mathematics Education,1981,12(1):27-29.
[2] Carpenter T P,Hiebert J,Moser J M.The effect of instruction on children's solutions of addition and subtraction word problems.Educational Studies in Mathematics,1983,14(1):55-72.
[3] Mayer R E.Frequency norms and structural analysis of algebra story problems into families,categories and templates.Instructional Science, 1981,10(2):135-175.
[4] Kintsch W,Greeno J G.Understanding and solving word arithmetic problems.Psychological Review,1985,92(1):109-129.
[5] Jitendra A K,Griffin C C,Deatline-Buchman A,Sczesniak E. Mathematical word problem solving in third-grade classrooms.The Journal of Educational Research,2007,100(5):283-302.
[6] Xin Ziqiang.Fourth through sixth graders'representations of area-of-rectangle problems:Influences of relational complexity and cognitive holding power.The Journal of Psychology:Interdisciplinary and Applied, 2008,142(6):581-600.
[7] 张华,庞丽娟,陶沙,陈瑶,董奇.儿童早期数学认知能力的结构与特点.心理学报,2003,35(6):810-817.
[8] Reusser K,Stebler R.Every word problem has a solution-The social rationality mathematical modeling in schools.Learning and Instruction, 1997,7(4):309-327.
[9] 陈英和,仲宁宁,赵宏,张小龙.小学2~4年级数学应用题表征策略对其解决不规则问题影响的研究.心理科学,2005,28 (6):1314-1317.
[10] De Corte E,Verschaffel L.The effect of semantic structure on first graders strategies for solving addition and subtraction word problems. Journal for Research in Mathematics Educations,1987,18(5):363-381.
[11] Arend I,Colom R,Botella J,Contreras MJ,Rubio V,Santacreu J.Quantifying cognitive complexity:evidence from a reasoning task. Personality and Individual Differences,2003,35:659-669.
[12] 胡清芬,辛自强,张莉,张丽.儿童图形表征能力测验编制的初步报告.心理发展与教育,2008,24(1):113-118.
[13] 张丽,辛自强.平衡秤任务复杂性的事前与事后分析.心理发展与教育,2008,24(2):36-43.
[14] 张掌然.问题结构解析.中州学刊,2006,1:171-174.
[15] 辛自强.关系-表征复杂性模型的检验.心理学报,2003,35(4):504-513.
[16] 辛自强.问题解决中图式与策略的关系:来自表征复杂性模型的说明.心理科学,2004,27(6):1344-1348.
[17] 辛自强.问题解决与知识建构.北京:教育科学出版社,2005.
[18] 辛自强.关系-表征复杂性模型.心理发展与教育,2007,23(3):122-128.
[19] Jensen A R.The importance of intraindividuality in reaction time. Personality and Individual Differences,1992,13(8):869-882.
[20] Rasch G.Probabilistic models for some intelligence and attainment tests.Chicago:University of Chicago Press,1960.
[21] Keats J A.Rasch的测验理论.心理学报,1990,3:267-271.
[22] 王蕾.Rash客观等距测量在PISA中国试测研究中的实践. 心理学探新,2007,27(4):69-73.
[23] Wright B D,Linacre J,Gustafson J E,Martin-Lof P.Reasonable mean-square fit values.Rasch Measurement Transactions,1994,8(3):370.
[24] Bond T G,Fox C M.Applying the Rasch model:Fundamental measurement in human sciences.Mahwah,NJ:Erlbaum,2001.
[25] Müller U,Sokol B,Overton W F.Developmental sequences in class reasoning and propositional reasoning.Journal of Experimental Child Psychology,1999,74(2):69-106.
[26] Birney D P,Halford G S,Andrews G.Measuring the influence of complexity on relational reasoning:The development of the Latin square task. Educational and Psychological Measurement,2006,66:146-171.
[27] Biggs J B.Modes of learning forms of knowing and ways of schooling.In:A Demetriou,M Shayer,A Efklides(Eds.),Neo-Piagetian theories of cognitive development.London:Routledge,1992:31-51.
[28] 李祥兆.学生思维评价的新视角-SOLO分类评价理论评 述.教育科学研究,2005,17(11):22-24.
[29] 李祥兆,赵志英.数学开放题的SOLO分类评价法及其应 用.数学教学,2005,11:11-14.
[1] 张莉, 辛自强, 古丽扎伯克力. 5~9岁儿童在不同复杂性任务上类比推理的发展特点[J]. 心理发展与教育, 2010, 26(6): 584-591.
[2] 王树芳, 莫雷, 金花. 任务难度和反馈学习对儿童类比推理能力的影响[J]. 心理发展与教育, 2010, 26(1): 24-30.
[3] 张丽, 辛自强. 平衡秤任务复杂性的事前与事后分析[J]. 心理发展与教育, 2008, 24(2): 46-53.
[4] 张学民, 申继亮, 林崇德. 小学教师课堂信息加工策略的研究[J]. 心理发展与教育, 2005, 21(4): 56-60.
[5] 刘希平. 任务难度预见能力发展的实验研究元记忆发展研究之一[J]. 心理发展与教育, 1998, 14(4): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!