Psychological Development and Education ›› 2014, Vol. 30 ›› Issue (3): 329-336.

Previous Articles    

Finger Gnosis, Movements and Numeral Representations Contribute to Numerical Cognition

HU Yan-rong, ZHANG Li, CHEN Min   

  1. Faculty of Psychology, Southwest University, Chongqing 400715
  • Online:2014-05-15 Published:2014-05-15

Abstract: Finger is the most frequently used tool for numeral representations before children grasp symbolic numbers. Considerable studies have revealed the important contribution of finger to numerical cognition. However, it is still unclear about the cognitive mechanism of how finger influences numerical cognition. The article reviews the role of fingers in numerical cognition based on three aspects: finger gnosis, finger movements and finger numeral representations. It is possible that finger gnosis facilitates the development of number representations which influences other mathematical abilities. Finger movement related to magnitude representation may help to process numerical magnitude. There are two controversial viewpoints about the roles of finger numeral representations in numerical cognition. One is that finger numeral representations promote the conversion from non-symbolic number representations to symbolic number representations. The other is that finger numeral representations may be one of semantic quantity representations. Future studies should be devoted to developmental studies, mechanism, and gender difference to investigate the functional role of finger in numerical cognition.

Key words: finger gnosis, finger movements, finger numeral representations, numerical representation

CLC Number: 

  • B844
Almeida, J., Mahon, B. Z., Nakayama, K., & Caramazza, A. (2008). Unconscious processing dissociates along categorical lines. Proceedings of the National Academy of Sciences, 105(39), 15214-15218.
Anderson, M. L., & Penner-Wilger, M. (2007). Do redeployed finger representations underlie math ability. In Proceedings of the 29th Annual Cognitive Science Society (p. 1703).
Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction.Neuroreport, 15(18), 2773-2777.
Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage, 62(3), 1520-1528.
Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563-576.
Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 46-53.
Badets, A., Bouquet, C. A., Ric, F., & Pesenti, M. (2012). Number generation bias after action observation. Experimental brain research, 221(1), 43-49.
Badets, A., Pesenti, M., & Olivier, E. (2010). Response-effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63(1), 16-22.
Bender, A., & Beller, S. (2011). Fingers as a Tool for Counting-Naturally Fixed or Culturally Flexible? Frontiers in psychology, 2, 256.
Butterworth, B. (1999). What counts: How every brain is hardwired for math.
Chochon, F., Cohen, L., Van De Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617-630.
Costa, A. J., Silva, J. B. L., Chagas, P. P., Krinzinger, H., Lonneman, J., Willmes, K., et al. (2011). A hand full of numbers: a role for offloading in arithmetics learning? Frontiers in psychology, 2, 368.
Crollen, V., Seron, X., & Nol, M. P. (2011). Is finger-counting necessary for the development of arithmetic abilities?Frontiers in psychology, 2, 242.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 27-39.
Di Luca, S., & Pesenti, M. (2011). Finger numeral representations: more than just another symbolic code. Frontiers in psychology, 2, 272.
Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59(9), 1648-1663.
Di Luca, S., Lefevre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations.Cognition,117(1), 95-100.
Domahs, F., Klein, E., Moeller, K., Nuerk, H. C., Yoon, B. C., & Willmes, K. (2011). Multimodal semantic quantity representations: further evidence from Korean sign language.Frontiers in psychology, 2, 389.
Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children's mental calculation. Cortex, 44(4), 359-367.
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. C. (2010). Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251-266.
Gallese, V., & Lakoff, G. (2005). The brains concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive neuropsychology, 22(3-4), 455-479.
Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: local diagnostic value. Archives of Neurology and Psychiatry, 44(2), 398.
Gracia-Bafalluy, M., & Nol, M. P. (2008). Does finger training increase young children's numerical performance? Cortex, 44(4), 368-375.
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307.
Imbo, I., Vandierendonck, A., & Fias, W. (2011). Passive hand movements disrupt adults' counting strategies. Frontiers in psychology, 2, 201.
Iversen, W., Nuerk, H. C., & Willmes, K. (2004). Do signers think differently? The processing of number parity in deaf participants. Cortex, 40(1), 176-178.
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: when do fingers help? Developmental Science, 11(5), 662-668.
Kadosh, R. C., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32(3-4), 313-328.
Klein, E., Moeller, K., Willmes, K., Nuerk, H. C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in psychology, 2, 197.
Krinzinger, H., Koten, J. W., Horoufchin, H., Kohn, N., Arndt, D., Sahr, K., et al. (2011). The role of finger representations and saccades for number processing: an fMRI study in children.Frontiers in psychology, 2, 373.
Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400.
Michaux, N., Masson, N., Pesenti, M., & Andres, M. (2013). Selective interference of finger movements on basic addition and subtraction problem solving. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 60(3), 197-205.
Moeller, K., Martignon, L., Wessolowski, S., Engel, J., & Nuerk, H. C. (2011). Effects of finger counting on numerical development-the opposing views of neurocognition and mathematics education. Frontiers in psychology, 2, 328.
Nol, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology, 11(5), 413-430.
Penner-Wilger, M., & Anderson, M. L. (2008, July). An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In Proceedings of the 30th annual meeting of the Cognitive Science Society, Austin, TX (pp. 1647-52).
Penner-Wilger, M., Fast, L., LeFevre, J., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., et al. (2007). The foundations of numeracy: Subitizing, finger gnosia, and fine-motor ability. In Proceedings of the 29th Annual Cognitive Science Society (pp. 1385-1390).
Penner-Wilger, M., Fast, L., LeFevre, J., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., et al. (2009). Subitizing, finger gnosis, and the representation of number. Proceedings of the 31st Annual Cognitive Science Society, 520-525.
Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12(3), 461-479.
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983-993.
Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in human neuroscience, 5(147), 1-10.
Reeve, R., & Humberstone, J. (2011). Five- to 7-year-olds' finger gnosia and calculation abilities. Frontiers in Psychology, 2, 359.
Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609-1624.
Soylu, F., & Newman, S. D. (2011). Is Arithmetic Embodied? Differential Interference of Sequential Finger Tapping on Addition during a Dual Task Paradigm. 33th Annual Cognitive Science Society, Boston, MA.
Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation.Brain, 123(11), 2240-2255.
Walsh, V. (2003). A theory of magnitude: Common cortical matrics of time, space and quantity. Trends in cognitive sciences, 7(11), 483-488.
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation.Neuroimage, 13(2), 314-327.
叶浩生. (2010). 具身认知: 认知心理学的新取向. 心理科学进展, 18(5), 705-710.
[1] GUAN Dongxiao, AI Jiru, HUANG Bijuan, CUI Shuang, SI Jiwei. Math Anxiety Affects Children's Numerical Representation: Cognitive Inhibition as a Moderator [J]. Psychological Development and Education, 2020, 36(1): 10-18.
[2] ZHANG Fan, LAI Yinghui, CHEN Yinghe. Development of Children's Number Line Estimation: the Influence of Mental Distance [J]. Psychological Development and Education, 2015, 31(2): 149-156.
[3] ZHOU Guang-dong, MO Lei, WEN Hong-bo. Representational Patterns of Numerical Estimation and its Development in Children [J]. Psychological Development and Education, 2009, 25(4): 21-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!