Psychological Development and Education ›› 2013, Vol. 29 ›› Issue (3): 247-254.

Previous Articles     Next Articles

A Study on the Storage of Object and Spatial Working Memory for the Graphs with Features of Double Dimensions

WU Wen-chun   

  1. Department of Education, Hanshan Normal University, Chaozhou 521041
  • Online:2013-05-15 Published:2013-05-15

Abstract: The study investigated the storage mechanism and capacity of visual object working memory and visual spatial working memory for the graphs with features of double dimensions using change-detection paradigm. 40 participants aged 20.56±1.73 were randomly divided into two equal groups. They completed Experiment 1 and Experment 2 seperately. The stimulus graphs in experiment 1 were presented by basic features of color and shape, and that landolt rings in experiment 2 were presented by color and orientation. The results of two experiments both showed: (1) There was no significant difference between the memory accuracy of feature exchange condition and that of single feature change condition. (2) The performance of visual object working memory task was significantly higher than that of visual spatial working memory task. (3) Subjects could remember 2-3 objects and 3-4 spatial locations in visual working memory. These suggested that, the graphs with features of double dimensions were stored as integrated units in visual object and visual spatial working memory, and the storage capacity of spatial working memory was higher than that of object working memory.

Key words: object working memory, spatial working memory, store, capacity, graphs with features of double dimensions

CLC Number: 

  • B844.3
Alvarez, G.A., & Cavanagh, P. (2004). The capacity of visual short term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111.
Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622-628.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity.Behavioral and Brain Sciences, 24(01), 87-114.
Delvenne, J.F., Braithwaite, J.J., Riddoch, M.J., & Humphreys, G.W. (2002). Capacity limits in visual short-term memory for local orientations. Cahiers de Psychologie Cognitive Current Psychology of Cognition, 21(6), 681-690.
Eng, H.Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 126, 1127-1133.
Jiang, Y., Olson, I.R., & Chun, M.M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683-702.
Klauer, K.C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology: General, 133(3), 355-381.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
Machizawa, M. G., Driver, J. (2011). Principal component analysis of behavioural may relate to speci?c aspects of attention. Neuropsychologia, 49, 1518-1526.
Olson, I.R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the "strong object" hypothesis. Perception& Psychophysics,64(7), 1055-1067.
Pashler, H. (1988). Familiarity and visual change detection. Percept Psychophys,44(4),369-378.
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324-330.
Shaw, R.M., Helmes, E., & Mitchell, D.(2006).Age-related change in visual, spatial and verbal memory. Australasian Journal on Ageing, 25(1), 14-19.
Smith, E.E., Jonides, J., Koeppe, R.A., Awh, E. ,Schumacher, E.,& Minoshima, S. (1995). Spatial vs. object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337-356.
Song, J.H., Jiang, Y. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30, 963-972.
Treisman, A.M., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97-136.
Vogel, E. K., & Machizawa, M.G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature ,428(6984), 748-751.
Vogel, E.K., Woodman, G.F., Luck, S.J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114.
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48-64.
Wolfe, J.M., Bennett, S.C. (1997) Preattentive object files: Shapeless bundles of basic features. Vision Research, 37(1), 25-44.
Xu, Y.(2002). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 458-468.
Xu, Y. (2006). Understanding the object benefit in visual short-term memory: The roles of feature proximity and connectedness. Perception &Psychophysics, 68(5) ,815-828.
Xu, Y. (2002a). Encoding color and shape from different parts of an object in visual short-term memory. Perception & Psychophysics, 64(8), 1260-80.
Xu, Y. (2002b). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 458-68.
Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95.
Zhang, W., & Luck, S.J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-235.
陈彩琦, 付桂芳, 金志成. (2003). 注意水平对视觉工作记忆客体表征的影响. 心理学报, 35(5), 591-597.
单西娇, 李寿欣. (2010). 由两个模型看视觉工作记忆容量机制的研究. 心理科学进展, 18(11), 1684-1691.
李寿欣, 周颖萍. (2006). 个体认知方式与材料复杂性对视空间工作记忆的影响. 心理学报, 38(4), 523-531.
刘晓平, 王兆新, 陈湘川, 张达人. (2003). 视觉工作记忆中的子系统. 心理学报, 35(5), 598-603.
罗良, 刘兆敏, 林崇德. (2007). 人类视空间工作记忆分离的证据与机制. 心理科学进展, 15(3), 394-400.
罗良, 林崇德, 陈桄. (2010). 注意次级任务对客体与空间工作记忆信息保持的选择性干扰. 心理发展与教育, 6, 561-568.
沈模卫, 李杰, 郎学明, 高涛, 高在峰, 水仁德. (2007). 客体在视觉工作记忆中的存储机制. 心理学报, 39(5), 761-767.
沃建中, 罗良, 林崇德, 吕勇. (2005). 客体与空间工作记忆的分离:来自皮层慢电位的证据. 心理学报, 37(6), 729-738.
吴文春, 金志成. (2006). 视觉工作记忆中的储存单位——特征还是客体? 心理科学, 29(1), 37-40.
吴文春, 孙悦亮. (2013). 图形规则性对客体和空间工作记忆存储的影响. 心理与行为研究, 2.
张达人, 江雄, 唐孝威. (1997). 视空间和听觉数字记忆的混合广度. 心理学报, 29(3), 234-239.
[1] WU Wenchun, CHEN Jiaqian, LIU Chang. Time Course of Feature Processing for 3-D Graphics in Object and Spatial Working Memory [J]. Psychological Development and Education, 2019, 35(5): 513-521.
[2] WANG Kaixuan, MIAO Yilin, CHE Xiaowei, LI Shouxin. The Influence of Spatial Working Memory Load on Inhibition of Return Elicited by Central Gaze Cue [J]. Psychological Development and Education, 2018, 34(6): 649-655.
[3] WU Wenchun, SUN Yueliang, XU Xue. The Storage Mechanism of Object and Spatial Working Memory for the 3-D Graphs [J]. Psychological Development and Education, 2017, 33(2): 145-152.
[4] XING Qiang, XIA Jingjing, WANG Caiyan. The Influences of Working Memory Capacity and Content Relevance on Category Learning [J]. Psychological Development and Education, 2016, 32(3): 324-329.
[5] LUO Liang, LIN Chong-de, CHEN Guang. Effects of Spatial and Object-based Attention Interference on Spatial and Object Working Memory [J]. Psychological Development and Education, 2010, 26(6): 561-568,576.
[6] CAI Dan, LI Qi-wei, DENG Ci-ping. An Exploration of Individual Difference Theories of Working Memory [J]. Psychological Development and Education, 2010, 26(2): 205-209.
[7] LUO Liang, LIN Chong-de. Effects of Verbal Second Interference on Spatial and Object Working Memory [J]. Psychological Development and Education, 2010, 26(2): 113-120.
[8] HU Qing-fen, XIN Zi-qiang, ZHANG Li, ZHANG Li. Preliminary Report on Figural Representational Capacity Test for Children [J]. Psychological Development and Education, 2008, 24(1): 113-118.
[9] GONG Yin-qing, LI Hong, SHENG Li-ping. Training Studies on Rule-based Causal Reasoning in Children Aged 3 to 4 Years [J]. Psychological Development and Education, 2006, 22(4): 12-16.
[10] YI Lin-lin, SU Yan-jie, WANG Su. Children’s Capacity of IOR in Simultaneous Cueing Processes [J]. Psychological Development and Education, 2004, 20(3): 1-5.
[11] GUO Shu-bin, MO Lei. A Concept of Processing Capacity: Based on The Complexity of Concepts [J]. Psychological Development and Education, 2002, 18(2): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!