Psychological Development and Education ›› 2021, Vol. 37 ›› Issue (5): 619-627.doi: 10.16187/j.cnki.issn1001-4918.2021.05.02

Previous Articles     Next Articles

Research on Cognitive Load of Graphic Processing in Virtual Reality Learning Environment

CHEN Lijun, LIU Limin, LIN Yueyang, ZHANG Lingyan   

  1. Faculty of Educational Science and Technology, Guangdong Polytechnic Normal University, Guangzhou 510665
  • Published:2021-09-23

Abstract: To detect influential factors of cognitive load in virtual reality learning environment, this study selected 44 undergraduates as subjects to conduct a three-factor mixed design experiment:3 (memorization project number:3, 4, 5)×2 (presentation time:0.5s, 0.8s)×2 (text clues:with or without), using single stimulus test paradigm for stimulus perception detection and dual-task paradigm for cognitive load measurement. Participants were asked to determine whether a figure had just appeared on certain position or not after learning. A sub-task signal appeared half the time. The results showed that:(1) The number of items has a significant impact on learners' cognitive load. The more items, the lower the correct rate of main task and the higher the learners' cognitive load was. The appropriate number of stimulus is four;(2) Item duration had a significant impact on learners' cognitive load. The longer the item duration, the higher the accuracy of sub-tasks and the lower the learners' cognitive load was. However, item duration didn't affect main-task's performance. Item duration longer than 0.5s was helpful for sub-task processing;(3) Text cues had significant effect on cognitive load. Repeated text cues increased cognitive load. These findings illustrated that number of items and length of item duration was positively related to cognitive load; text clue was helpful to released subjective cognitive load. Task performance and subjective measurement indicators were not always consistent in reflecting cognitive load intensity.

Key words: virtual reality learning environment, cognitive load, graphic processing, presentation time, text clues

CLC Number: 

  • B844
Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cayé-Thomasen, P., & Sørensen, M. S. (2016). Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation. Laryngoscope, 126(2), E74-E79.http://doi.org/10.1002/larg.25449
Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology General, 133(1), 83-100.
Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and Cognitive lood in working memery Joumal of Exterimental Psychology. Learning, Memery and Cognition, 33(3),570-585.
Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning & Instruction, 3(1), 1-21.
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53-61.
Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49(2), 109-119.
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., …Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20-26.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition & Instruction, 8(4), 293-332.
Chen, Y.-L. (2016). The effects of virtual reality learning environment on student cognitive and linguistic development. Asia-Pacific Education Research, 25(4), 637-646.
Coyle, H., Traynor, V., & Solowij, N. (2015). Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline:Systematic review of the literature. The American Journal of Geriatric Psychiatry, 23(4), 335-359.
Dan, A., & Reiner, M. (2017). Eeg-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. International Journal of Psychophysiology, 122 (12), 75-84.
Dan, A., & Reiner, M. (2018). Reduced mental load in learning a motor visual task with virtual 3D method. Journal of Computer Assisted Learning,34(1), 84-93.
Deleeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load:Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223-234.
Harris, D. J., Buckingham, G., Wilson. M. R., & Vine, S. J. (2019). Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action. Experimental Brain Research, 237(11), 2761-2766.
Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning:United brains for complex tasks. Educational Psychology Review, 21(1), 31-42.
Liu, M., & Curet, M. (2015). A review of training research and virtual reality simulators for the da vinci surgical system. Teaching & Learning in Medicine, 27(1), 12-26.
Kalyuga, S., Chandler, P., & Sweller, J. (2004). When redundant on-screen text in multimedia technical instruction can interfere with learning. Human Factors:The Journal of the Human Factors and Ergonomics Society, 46(3), 567-581.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning & Instruction, 12(1), 107-119.
Paas, F., & Gog, T. V. (2006). Optimising worked example instruction:different ways to increase germane load. Learning & Instruction, 16(2), 87-91.
Paas, F., & Van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills:A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-133.
Pantelidis, V. S. (2015). Virtual reality and engineering education. Computer Applications in Engineering Education, 5(1), 3-12.
Phillips, W. A., & Christie, D. F. (1977). Interference with visualization. The Quarterly Journal of Experimental Psychology, 29(4), 637-650.
Reisoǧlu,I., Topu, B., YIlmaz, R., Karakuş YIlmaz, T., & Goktaş, Y.(2017). 3D virtual learning environments in education:A meta-review. Asia Pacific Educational Review, 18(1),81-100.
Sweller, J. (1988). Cognitive load during problem solving:effects on learning. Cognitive Science, 12(2), 257-285.
Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4(4), 295-312.
Tuovinen, J. E., & Paas, F. (2004). Exploring multidimensional approaches to the efficiency of instructional conditions. Instructional Science, 32(1-2), 133-152.
Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning:recent developments and future directions. Educational Psychology Review, 17(2), 147-177.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology:Human Perception and Performance, 27(1), 92-114.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology:Human Perception and Performance, 32(6), 1436-1451.
丁道群, 罗扬眉. (2009). 认知风格和信息呈现方式对学习者认知负荷的影响. 心理学探新, 29(3), 37-40.
丁楠, 汪亚珉. (2017). 虚拟现实在教育中的应用:优势与挑战. 现代教育技术, 27(2), 19-25.
高贺明, 李富洪, 张奇. (2015). 定向遗忘的三阶段加工:注意退出、注意抑制与累积复述. 第十八届全国心理学学术会议, 355-356.
高媛, 黄真真, 李冀红, 黄荣怀. (2017). 智慧学习环境中的认知负荷问题. 开放教育研究, 23(1), 56-64.
李金波. (2009). 网络学习环境中影响学习者认知负荷的因素. 电化教育研究, 30(9), 37-41.
李金波,许百华. (2009). 人机交互过程中认知负荷的综合测评方法. 心理学报, 41(1), 35-43.
李金波, 许百华, 田学红. (2010). 人机交互中认知负荷变化预测模型的构建. 心理学报, 42(5), 559-568.
刘畅, 张璐. (2015). 时间限制和搜索任务类型对搜索体验的影响分析. 现代图书情报技术, 31(9), 1-8.
孙崇勇. (2012). 心理负荷测量方法的现状与发展趋势. 人类工效学, 18(2), 88-92.
孙崇勇, 刘电芝. (2013). 认知负荷主观评价量表比较. 心理科学, 36(1), 196-203.
孙崇勇, 刘电芝. (2016). 学习材料的背景颜色对认知负荷及学习的影响. 心理科学, 39(4),869-874.
王辞晓. (2018). 具身认知的理论落地:技术支持下的情境交互. 电化教育研究, 39 (7), 22-28.
王福兴, 段朝辉, 周宗奎, 陈珺. (2015). 邻近效应对多媒体学习中图文整合的影响:线索的作用. 心理学报, 47(2), 224-233.
王抢, 朱彤, 朱可宁, 吴玲. (2014). 视觉与听觉次任务对驾驶人视觉的影响及差异. 安全与环境学报, 14(4), 49-52.
王文智. (2009). 基于认知负荷理论的多媒体教学呈现原则探讨. 远程教育杂志,17 (2), 33-37.
吴文春, 孙悦亮, 徐学. (2017). 三维图形的客体和空间工作记忆存储机制. 心理发展与教育, 33(2), 145-152.
谢和平, 安婧, 王福兴. (2017). 多媒体学习中的图文整合:同步化线索和学习者经验的作用. 心理科学, 40(5), 82-88.
王斌, 李智睿, 伍丽梅, 张积家. (2019). 具身模拟在汉语肢体动作动词理解中的作用. 心理学报, 51(12), 1291-1305.
汪存友, 王军, 李玲静. (2019). 工作记忆容量对软件操作技能教学视频自主学习效果和认知负荷的影响研究. 现代教育技术,29(1), 52-58.
邢强, 黄伟东. (2008). 认知负荷对顿悟问题解决的影响. 心理科学, 31(4), 981-983.
张慧, 张定文, 黄荣怀. (2018). 智能教育时代认知负荷理论发展、应用与展望——"第十一届国际认知负荷理论大会"综述. 现代远程教育研究, 156(6), 37-44.
张志祯. (2016). 虚拟现实教育应用:追求身心一体的教育——从北京师范大学"智慧学习与VR教育应用学术周"说起. 中国远程教育, 6, 5-15.
赵一鸣, 郝建江, 王海燕, 乔星峰. (2016). 虚拟现实技术教育应用研究演进的可视化分析. 电化教育研究, 37(12), 26-33.
朱福军, 郑萌, 顾倩颐.(2017). VR技术视角下课堂学习环境革新与重构. 中国教育技术装备, 2,43-45.
[1] YU Xiao, ZHANG Heyi, QI Yue, CHEN Yinghe, LIU Haoning, ZHAO Yuxi, QIAO Xuewen. The Role of Inhibitory Control in the Development of Analogical Mapping: Cognitive Load Matters [J]. Psychological Development and Education, 2023, 39(1): 1-11.
[2] WANG Yanqing, YANG Xiaomeng, ZHAO Tingting, GAO Chunying, ZHANG Yang, ZHAO Qingbai, WANG Fuxing, HU Xiang'en. Does Segmentation Facilitate Video Learning? [J]. Psychological Development and Education, 2022, 38(4): 600-608.
[3] YUAN Juanjuan, YANG Yang, ZHENG Zhiwei, LIU Pingping. Picture-text Horizontal Layout Enhances Recognition of Unfamiliar Words: Evidence from 8-year-old Children and Adults [J]. Psychological Development and Education, 2021, 37(4): 525-538.
[4] LIU Qinxue, ZHANG Juyuan, LIN Yue. The Relationship between College Students' Smartphone Addiction and Inhibitory Control: The Moderating Roles of Phone Position and Cognitive Load [J]. Psychological Development and Education, 2021, 37(2): 257-265.
[5] WANG Shu, YIN Yue, WANG Ting, LIU Guofang, LUO Junlong. The Learning Performance and Flow Experience in Instructional Design, Based on Cognitive Load Theory [J]. Psychological Development and Education, 2019, 35(3): 329-337.
[6] PAN Yi-zhong, YANG Shuang, YANG Mei-ling. The Characteristics of Global Orthographic Processing for Children with Spelling Difficulties under Fully Processing Condition [J]. Psychological Development and Education, 2010, 26(4): 344-350.
[7] YANG Shuang, NING Ning, LIU Xiang-ping, YAN Yun-tang, PAN Yi-zhong. The Characteristics of Global Orthographic Processing for Children with Spelling Difficulties [J]. Psychological Development and Education, 2008, 24(4): 34-38,49.
[8] GONG De-ying, LIU Dian-zhi, ZHANG Da-jun. The Effect of Abstract and Background Music on Cognitive Load and Multimedia Learning [J]. Psychological Development and Education, 2008, 24(1): 83-87.
[9] CAO Bao-long, LIU Hui-juan, LIN Chong-de. Cognitive Load Influenced the Pupill’s Strategies Selection of Distributing Working Memory Resources [J]. Psychological Development and Education, 2005, 21(1): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!