心理发展与教育 ›› 2016, Vol. 32 ›› Issue (4): 463-470.doi: 10.16187/j.cnki.issn1001-4918.2016.04.10
高婷, 刘儒德, 刘颖, 庄鸿娟
GAO Ting, LIU Rude, LIU Ying, ZHUANG Hongjuan
摘要: 选取北京和四川两地53名小学六年级学生分别完成同分子、同分母与异分子异分母三类分数比较任务,收集被试口语报告的策略作为直接证据,并以分数大小和分数距离对反应时的回归分析结果作为间接证据,共同探究被试在分数比较任务中的加工模式,结果发现,(1)在三类分数比较中,被试均采用成分加工模式而非整体加工模式;(2)口语报告的策略与反应时回归分析的结果并不完全吻合,从侧面证明了原有研究方法的不稳定性。
中图分类号:
G442
Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44(1), 75-106.Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1410-1419.Clarke, D. M., & Roche, A. (2009). Students' fraction comparison strategies as a window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72(1), 127-138.Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: abstract or not abstract? Behavioral and Brain sciences, 32(3), 313-328.Faulkenberry, T. J., & Pierce, B. H. (2011). Mental representations in fraction comparison: Holistic versus component-based strategies. Experimental psychology, 58(6), 480-489.Huber, S., Moeller, K., & Nuerk, H. C. (2014). Adaptive processing of fractions — Evidence from eye-tracking. Acta Psychologica, 148(3), 37-48.Liu, C., Xin, Z., Lin, C., & Thompson, C. A. (2013). Children's mental representation when comparing fractions with common numerators. Educational Psychology, 33(2), 175-191.Meert, G., Grégoire, J., & Nol, M. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62(8), 1598-1616.Meert, G., Grégoire, J., & Nol, M. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10-and 12-year-olds? Journal of Experimental child psychology, 107(3), 244-259.Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215(5109), 1519-1520.Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28(4), 64-72.Schleppenbach, M., Perry, M., Miller, K. F., Sims, L., & Fang, G. (2007). The answer is only the beginning: Extended discourse in Chinese and US mathematics classrooms. Journal of Educational Psychology, 99(2), 380-396.Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1227-1238.Sprute, L., & Temple, E. (2011). Representations of fractions: Evidence for accessing the whole magnitude in adults. Mind, Brain, and Education, 5(1), 42-47.Zhang, L., Fang, Q., Gabriel, F. C., & Szücs, D. (2014). The componential processing of fractions in adults and children: Effects of stimuli variability and contextual interference. Frontiers in Psychology, 5(3), 250-253.Zhou, X., Chen, C., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task.Cognition,106(3),1525-1536.辛自强, 李丹. (2013). 小学生在非符号材料上的分数表征方式. 心理科学,36(2),364-371. |
[1] | 卢张龙, 吕勇, 沈德立. 内隐序列学习与注意负荷关系的实验研究[J]. 心理发展与教育, 2011, 27(6): 561-568. |
[2] | 韩秀, 裴燕红. 大学生智力与认知风格对内隐序列学习的影响[J]. 心理发展与教育, 2010, 26(1): 48-53. |
[3] | 李虹, 舒华, 薛锦, 杨剑峰. 阅读障碍儿童的技能自动化能力[J]. 心理发展与教育, 2008, 24(1): 101-105. |
[4] | 沃建中, 林崇德. 信息加工速度的发展模式[J]. 心理发展与教育, 1999, 15(3): 1-6,11. |
[5] | 沃建中, 林崇德. 大学生对句子、图形的内部加工过程研究[J]. 心理发展与教育, 1997, 13(4): 22-27. |
|