心理发展与教育 ›› 2016, Vol. 32 ›› Issue (4): 463-470.doi: 10.16187/j.cnki.issn1001-4918.2016.04.10

• 教与学心理学 • 上一篇    下一篇

小学生分数比较中的加工模式:基于反应时和口语报告的研究

高婷, 刘儒德, 刘颖, 庄鸿娟   

  1. 应用实验心理北京市重点实验室, 北京师范大学心理学院, 北京 100875
  • 出版日期:2016-07-15 发布日期:2016-07-15
  • 通讯作者: 刘儒德,E-mail:rdliu@bnu.edu.cn E-mail:rdliu@bnu.edu.cn
  • 基金资助:

    中央高校基本科研业务费专项资金资助(SKZZY2014059)。

The Processing of Fractions Comparison Task in Elementary Students: Reaction Time and Trial-by-Trial Strategy Reports as Evidences

GAO Ting, LIU Rude, LIU Ying, ZHUANG Hongjuan   

  1. Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875
  • Online:2016-07-15 Published:2016-07-15

摘要: 选取北京和四川两地53名小学六年级学生分别完成同分子、同分母与异分子异分母三类分数比较任务,收集被试口语报告的策略作为直接证据,并以分数大小和分数距离对反应时的回归分析结果作为间接证据,共同探究被试在分数比较任务中的加工模式,结果发现,(1)在三类分数比较中,被试均采用成分加工模式而非整体加工模式;(2)口语报告的策略与反应时回归分析的结果并不完全吻合,从侧面证明了原有研究方法的不稳定性。

关键词: 分数比较任务, 成分加工模式, 整体加工模式, 口语报告, 反应时

Abstract: This study aimed at exploring the processing of fraction comparison tasks in fifty-three elementary school students through direct and indirect evidences. The students were asked to compare fraction magnitudes under different fraction comparison materials: fractions with common denominators/numerators, fractions without common components. The direct evidence was the processing strategies of making each comparison reported trial-by-trial by the students. The indirect evidence came from the regression analysis of the component distance and the real numerical value distance between the two fractions compared, and the size of the two fractions compared to the RT in each trial. The results showed that:(1) The three types of fraction comparisons were all processed in terms of the components in each fraction pair s instead of the real numerical value of the fractions compared, which indicates that most of the fraction comparisons were completed with componential processing instead of holistic processing;(2) The indirect evidences from the regression analysis of reaction time was not entirely consistent with the direct evidences from the trial-by-trial strategy reports, which proved the instability of the regression analysis methods broadly used in previous references.

Key words: fraction comparison, componential processing, holistic processing, trial by trial strategy reports, reaction time

中图分类号: 

  • G442

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44(1), 75-106.

Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1410-1419.

Clarke, D. M., & Roche, A. (2009). Students' fraction comparison strategies as a window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72(1), 127-138.

Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: abstract or not abstract? Behavioral and Brain sciences, 32(3), 313-328.

Faulkenberry, T. J., & Pierce, B. H. (2011). Mental representations in fraction comparison: Holistic versus component-based strategies. Experimental psychology, 58(6), 480-489.

Huber, S., Moeller, K., & Nuerk, H. C. (2014). Adaptive processing of fractions — Evidence from eye-tracking. Acta Psychologica, 148(3), 37-48.

Liu, C., Xin, Z., Lin, C., & Thompson, C. A. (2013). Children's mental representation when comparing fractions with common numerators. Educational Psychology, 33(2), 175-191.

Meert, G., Grégoire, J., & Nol, M. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62(8), 1598-1616.

Meert, G., Grégoire, J., & Nol, M. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10-and 12-year-olds? Journal of Experimental child psychology, 107(3), 244-259.

Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215(5109), 1519-1520.

Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28(4), 64-72.

Schleppenbach, M., Perry, M., Miller, K. F., Sims, L., & Fang, G. (2007). The answer is only the beginning: Extended discourse in Chinese and US mathematics classrooms. Journal of Educational Psychology, 99(2), 380-396.

Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1227-1238.

Sprute, L., & Temple, E. (2011). Representations of fractions: Evidence for accessing the whole magnitude in adults. Mind, Brain, and Education, 5(1), 42-47.

Zhang, L., Fang, Q., Gabriel, F. C., & Szücs, D. (2014). The componential processing of fractions in adults and children: Effects of stimuli variability and contextual interference. Frontiers in Psychology, 5(3), 250-253.

Zhou, X., Chen, C., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task.Cognition,106(3),1525-1536.

辛自强, 李丹. (2013). 小学生在非符号材料上的分数表征方式. 心理科学,36(2),364-371.
[1] 卢张龙, 吕勇, 沈德立. 内隐序列学习与注意负荷关系的实验研究[J]. 心理发展与教育, 2011, 27(6): 561-568.
[2] 韩秀, 裴燕红. 大学生智力与认知风格对内隐序列学习的影响[J]. 心理发展与教育, 2010, 26(1): 48-53.
[3] 李虹, 舒华, 薛锦, 杨剑峰. 阅读障碍儿童的技能自动化能力[J]. 心理发展与教育, 2008, 24(1): 101-105.
[4] 沃建中, 林崇德. 信息加工速度的发展模式[J]. 心理发展与教育, 1999, 15(3): 1-6,11.
[5] 沃建中, 林崇德. 大学生对句子、图形的内部加工过程研究[J]. 心理发展与教育, 1997, 13(4): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!