心理发展与教育 ›› 2014, Vol. 30 ›› Issue (2): 216-224.

• 理论与方法 • 上一篇    

追踪研究方法在国内心理研究中的应用述评

唐文清1,2, 方杰3, 蒋香梅1, 张敏强1   

  1. 1. 华南师范大学心理学院、心理应用研究中心, 广州 510631;
    2. 广西大学教育学院, 南宁 530004;
    3. 广东财经大学人文与传播学院, 广州 510320
  • 出版日期:2014-03-15 发布日期:2014-03-15
  • 通讯作者: 张敏强,E-mail:zhangmq1117@qq.com E-mail:zhangmq1117@qq.com
  • 基金资助:
    全国教育科学“十二五”规划教育部重点课题(GFA111009);广东省哲学社会科学“十二五”规划2013年度一般项目(GD13CXL01);2012年度教育部人文社会科学研究青年基金项目(12YJC190016);广西大学科研基金资助项目(XGS100019);广州市基础教育学业质量监测系统(二期)(GZIT2013-ZB0465).

Review of the Application of Longitudinal Study Method in Psychological Researches in China

TANG Wen-qing1,2, FANG Jie3, JIANG Xiang-mei1, ZHANG Min-qiang1   

  1. 1. School of Psychology、Psychological Application Research Center, South China Normal University, Guangzhou 510631, China;
    2. School of Education, Guangxi University, Nanning 530004, China;
    3. School of Humanities and Communication, Guangdong University of Finance & Economics, Guangzhou 510320, China
  • Online:2014-03-15 Published:2014-03-15

摘要: 以1982~2012年中国期刊网收录的88例追踪研究为对象,从应用现状、设计特征、数据处理三方面分析和评估追踪研究方法在国内心理研究的应用情况及存在的问题。结果显示,2005年之前追踪研究方法应用增长缓慢,2005年开始呈显著增长趋势,研究对象以未成年及成年早期群体为主。主要采用固定样本追踪设计,大部分研究测量2-3次、样本量在10~300之间、持续时间在3年内。61例有缺失的研究中,38例用删除法处理缺失;主要运用 HLM、方差分析、t检验和SEM分析追踪数据。相当部分研究存在测量次数少、样本量较小、持续时间短、被试缺失严重及数据处理方法相对陈旧问题。追踪研究方法的应用应注意,根据理论模型和研究有效性要求确定设计类型和设计特征,根据数据特征选择缺失处理方法和追踪数据分析方法。

关键词: 追踪研究方法, 设计特征, 数据分析方法, 文献述评

Abstract: To explore current situation and problems of application of longitudinal study method in psychological researches in China, this article reviewed 88 studies published in Chinese psychological journals or Ph.D. thesis and master's thesis, obtained from the methodological literature in CNKI database on longitudinal study method, since 1982 to 2012. The article focus on longitudinal study methods in application, design features and data analysis. Results of sample description revealed that, application of longitudinal method in psychological study grew slowly before 2005, then increased in a continuous growth trend, researches mainly explored development of people from birth to early adulthood. For design features, researchers tend to select panel study, most of the longitudinal studies design in two or three time point measurement, with samples range from 10 to 300, and no more than three years study duration. Of the 61 studies reporting attrition, 38 studies used deletion as missing data technique;the most commonly used methods in longitudinal data analysis is hierarchical linear model, repeated measures analysis of variance, t test and structural equation model. Problems of using longitudinal method lie in small number of measurement and sample, short study duration, serious data missing and relatively old analysis method using. Attention should be paid in two folds when using longitudinal methods, type and features of design should be determined by theoretical model and research effectiveness requiring;statistical methods and missing data methods should be selected according to data characteristics.

Key words: longitudinal study method, design feature, data analysis method, literature review

中图分类号: 

  • B841
Barzi, F., & Woodward, M. (2004). Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. American Journal of Epidemiology, 160(1), 34-45.
Burton, A., & Altman, D. (2004). Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. British Journal of Cancer, 91(1), 4-8.
Chou, C.-P., Yang, D., Pentz, M. A., & Hser, Y. I. (2004). Piecewise growth curve modeling approach for longitudinal prevention study. Computational Statistics & Data Analysis, 46(2), 213-225.
Duncan, S. C., & Duncan, T. E. (2012). Accelerated longitudinal designs. In B. P. Laursen, T. D. Little & N. A. Card (Eds.), Handbook of developmental research methods (pp. 31-45). New York: Guilford Press.
Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal designs. Psychological Methods, 1(3), 236-248.
Enders, C.K. (2011a). Missing not at random models for latent growth curve analyses. Psychological Methods, 16(1), 1-16.
Enders, C. K. (2011b). Analyzing longitudinal data with missing values. Rehabilitation Psychology, 56(4), 267-288.
Gottman, J. M., & Rushe, R. H. (1993). The analysis of change: Issues, fallacies, and new ideas. Journal of Consulting and Clinical Psychology, 61(6), 907-910.
Hertzog, C., Lindenberger, U., Ghisletta, P., & Von Oertzen, T. (2006). On the power of multivariate latent growth curve models to detect correlated change. Psychological Methods, 11(3), 244-252.
Jackson, D. L. (2010). Reporting results of latent growth modeling and multilevel modeling analyses: some recommendations for rehabilitation psychology. Rehabilitation Psychology, 55(3), 272-285.
Jeliic'. H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology. Developmental Psychology, 45(4), 1195-1199.
Kelley, K., & Rausch, J. R. (2011). Sample size planning for longitudinal models: accuracy in parameter estimation for polynomial change parameters. Psychological Methods, 16(4), 391-405.
Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation.
Annual Review of Psychology, 59, 537-563.
Miyazaki, Y., & Raudenbush, S. W. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods, 5(1), 44-63.
Moerbeek, M. (2008). Powerful and cost-efficient designs for longitudinal intervention studies with two treatment groups. Journal of Educational and Behavioral Statistics, 33(1), 41-61.
Moerbeek, M. (2011). The effects of the number of cohorts, degree of overlap among cohorts, and frequency of observation on power in accelerated longitudinal designs. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 7(1), 11-24.
Muthén, B. O., & Curran, P.J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2(4), 371-402.
Raudenbush, S. W., & Liu. X. F. (2001). Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychological Methods, 6(4), 387-401.
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: modeling change and event occurrence:modeling change and event occurrence. New York: Oxford University Press.
Tan, X., Shiyko, M. P., Li, R., Li, Y., & Dierker, L. (2012). A time-varying effect model for intensive longitudinal data. Psychological Methods, 17(1), 61-77.
Tekle, F. B., Tan, F. E., & Berger, M. P. (2011). Too many cohorts and repeated measurements are a waste of resources. Journal of Clinical Epidemiology, 64(12), 1383-1390.
Willett, J. B., Singer, J. D., & Martin, N. C. (1998). The design and analysis of longitudinal studies of development and psychopathology in context: Statistical models and methodological recommendations. Development and Psychopathology, 10(2), 395-426.
盖笑松, 张向葵. (2005). 多层线性模型在纵向研究中的运用.心理科学, 28(2), 429-431.
胡宁, 邓林园, 张锦涛, 方晓义, 陈蕾, 梅海燕. (2009). 家庭功能与青少年问题行为关系的追踪研究.心理发展与教育, 25(4), 93-100.
李波, 钱铭怡, 马长燕, (2005). 大学生羞耻感对社交焦虑影响的中心研究.中国临床心理学杂志, 13(2), 156-158.
林崇德. (2009). 发展心理学. 北京: 人民教育出版社.
刘红云. (2007). 如何描述发展趋势的差异: 潜变量混合增长模型.心理科学进展, 15(3), 539-544.
刘红云, 张雷. (2005). 追踪数据分析方法及其应用. 北京: 教育科学出版社.
刘源, 张骞, 刘红云.(2013).多阶段增长模型的方法比较.心理学探新, 33(5), 415~422.
茅群霞. (2005). 缺失值处理统计方法的模拟比较研究及应用.硕士学位论文, 四川大学.
茅于燕, 周志芳.(1986). 初生至三十六个月儿童智能发展的追踪研究(一). 心理学报, 2, 113-123.
沐守宽, 周伟. (2011). 缺失数据处理的期望-极大化算法与马尔可夫蒙特卡洛方法.心理科学进展, 19(7), 1083-1090.
隋光远. (2005). 中学生学业成就动机归因训练效果的追踪研究.心理科学, 28(1), 52-55.
孙铃, 陈会昌, 彭晓明, 陈欣银. (2005). 儿童早期到中期社交退缩行为的发展. 心理发展与教育, 4, 19-23.
王芳, 许小燕. (2007). 日记式追踪研究高校教师职业枯竭的产生原因及内部关系. 心理学探新, 27(4), 42-47.
张金荣. (2011). 3~12岁儿童人格的结构评定及其发展特点的追踪研究. 博士学位论文, 辽宁师范大学.
张敏强. (2010). 教育与心理统计学. 北京: 人民教育出版社.
张文新, 纪林芹, 宫秀丽, 张茜, 王益文, 陈欣银. (2003). 3~4岁儿童攻击行为发展的追踪研究.心理科学, 26(1), 49-52.
张晓, 陈会昌, 张桂芳, 周博芳, 吴巍. (2008). 亲子关系与问题行为的动态相互作用模型: 对儿童早期的追踪研究.心理学报, 40(5), 571-582.
赵冬梅, 周宗奎, 孙晓军, Hsueh.Y., Cohen. R. (2008). 小学儿童互选友谊的发展趋势及攻击行为的影响: 3年追踪研究. 心理学报, 40(12), 1266-1274.
周斌, 刘俊升, 刘柏涛. (2010). 书法练习对儿童多元智力发展的影响. 心理科学, 33(6), 1509-1511.
姚琦, 马华维, 李强. (2007). 对新员工入职期望变化的一项纵向研究. 心理学报, 39(6), 1122-1130.
[1] 张学新. 用公评审稿促进中国科技期刊的快速发展[J]. 心理发展与教育, 2013, 29(1): 109-111.
[2] 黎光明, 张敏强. 概化理论方差分量估计的跨分布分析[J]. 心理发展与教育, 2012, 28(6): 665-672.
[3] 康廷虎, 白学军. 任务类型和性别属性对人际信任的影响[J]. 心理发展与教育, 2012, 28(5): 456-462.
[4] 马文超, 边玉芳, 骆方. 网络成瘾的潜在结构:连续的还是分类的?[J]. 心理发展与教育, 2012, 28(5): 554-560.
[5] 曾平飞, 余娜, 辛涛, 王烨晖. 多维Rasch模型在维度分数报告中的应用—对带宽-保真度困境的解决[J]. 心理发展与教育, 2012, 28(3): 329-336.
[6] 辛涛, 谢敏. 群体水平领域分数及其估计方法[J]. 心理发展与教育, 2010, 26(4): 416-422.
[7] 贾宁, 白学军, 沈德立. 学习判断准确性的研究方法[J]. 心理发展与教育, 2006, 22(3): 103-109.
[8] 王登峰, 崔红, 胡军生, 陈侠. 中国青少年人格量表(QZPS-Q)的编制[J]. 心理发展与教育, 2006, 22(3): 110-115.
[9] 郝春东, 刘晓燕. 延迟满足的研究方法、理论及现状[J]. 心理发展与教育, 2006, 22(3): 120-124,128.
[10] 焦丽亚, 辛涛. 基于CTT的锚测验非等组设计中四种等值方法的比较研究[J]. 心理发展与教育, 2006, 22(1): 97-102.
[11] 张玲玲, 张文新, 纪林芹, Jari-Erik Nurmi. 青少年未来取向问卷中文版的测量学分析[J]. 心理发展与教育, 2006, 22(1): 103-108.
[12] 王永丽, 林崇德, 俞国良. 儿童社会生活适应量表的编制与应用[J]. 心理发展与教育, 2005, 21(1): 109-114.
[13] 李虹, 梅锦荣. 测量大学生的心理问题:GHQ-20的结构及其信度和效度[J]. 心理发展与教育, 2002, 18(1): 75-79.
[14] 罗清旭, 杨鑫辉. 《加利福尼亚批判性思维倾向问卷》中文版的初步修订[J]. 心理发展与教育, 2001, 17(3): 47-51.
[15] 高琨, 邹泓. 处境不利儿童的友谊关系研究[J]. 心理发展与教育, 2001, 17(3): 52-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!