心理发展与教育 ›› 2016, Vol. 32 ›› Issue (3): 324-329.doi: 10.16187/j.cnki.issn1001-4918.2016.03.09

• 教与学心理学 • 上一篇    下一篇

工作记忆容量与内容相关性对类别学习的影响

邢强, 夏静静, 王彩燕   

  1. 广州大学心理学系, 广州 510006
  • 出版日期:2016-05-15 发布日期:2016-05-15
  • 通讯作者: 邢强,E-mail:qiang_xingpsy@126.com E-mail:qiang_xingpsy@126.com
  • 基金资助:

    国家自然基金(31571144);反馈对知觉类别学习影响的认知神经机制资助项目。

The Influences of Working Memory Capacity and Content Relevance on Category Learning

XING Qiang, XIA Jingjing, WANG Caiyan   

  1. Department of Psychology, Guangzhou University, Guangzhou 510006
  • Online:2016-05-15 Published:2016-05-15

摘要: 类别学习是通过不断地分类练习,学会如何将类别刺激进行归类的过程。采用2(工作记忆容量:高、低)×4(内容相关性:方向、宽度、亮度、控制组)被试间实验设计,通过两个实验探讨工作记忆容量与内容相关性对基于规则类别学习和信息整合类别学习的影响。结果显示:(1)对基于规则类别学习来说,在高工作记忆容量条件下,当关注相关维度时,类别学习的成绩更好;(2)对基于信息整合类别学习来说,不管工作记忆容量如何,只要关注相关维度类别学习的成绩更好。

关键词: 类别学习, 工作记忆容量, 内容相关性, 基于规则类别学习, 信息整合类别学习

Abstract: Category learning is a process in which human beings classify perceptual simulations and acquire category knowledge by classification learning. 2(working memory capacity:high, low)×4(content relevance:direction, width, brightness, control) between-subject experiment were designed to explore the effects of working memory capacity and content relevance on category learning by two experiments.The results showed that:(1) Only under the condition of high capacity, focusing on the related dimensions can improve the classification performance in the rule-based category learning; (2) no matter what the working capacity is high or low, it can receive better classification performance if participants focus on the related dimensions of the information-integration category learning.

Key words: category learning, working memory capacity, dimension relevance, rule-based category learning, information integration category learning

Ashby, F. G., Alfonso-Reese, L. A., Turken, U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3),442-481.

Ashby, F. G., & Crossley, M. J. (2010). Interactions between declarative and procedural-learning categorization systems. Neurobiology of Learning and Memory, 94(1), 1-12.

Ashby, F. G., Ell, S. W., & Waldron, E. M. (2003). Procedural learning in perceptual categorization. Memory & Cognition, 31(7),1114-1125.

Ashby, F. G., & Maddox, W. T. (1990). Integrating information from separable psychological dimensions. Journal of Experimental Psychology:Human Perception and Performance, 16(3), 598-612.

Ashby, F. G., & Waldron, E. M. (2000). The neuropsychological bases of category learning. Current Directions in Psychological Science,9(1), 10-14.

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks:A methodological review and user's guide. Psychonomic Bulletin &Review, 12(5), 769-786.

DeCaro, M. S.,Thomas, R. D., & Beilock, S. L.(2008). Individual differences in category learning:Sometimes less working memory capacity is better than more. Cognition, 107(1), 284-294.

Filoteo, J. V., Lauritzen, S., & Maddox, W. T. (2010). Removing the frontal lobes:The effects of engaging executive functions on perceptual category learning. Psychological Science, 21(3), 415-423.

Grimm, L. R., & Maddox,W. T. (2013). Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning. Acta physiological, 144(3), 530-537.

Johansen, M. K., & Palmeri, T. J. (2002). Are there representational shifts during category learning. Cognitive Psychology,45(4), 482-553.

Kane, M. J., Bleckley, M. K., Conway, R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology:General, 130(2), 169-183.

Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention:limits on long-term memory Retrieval. Journal of Experimental Psychology:Learning, Memory, & Cognition, 26(2), 336-358.

Lewandowsky, S., Yang, L. X., Newell, B. R., & Kalish, M. L. (2012). Working memory does not dissociate between different perceptual categorization tasks. Journal of Experimental Psychology Learning Memory & Cognition, 38(4), 881-904.

Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioural Processes,66(3), 309-332.

Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004). Disrupting feedback processing interferes with rule-based but not information-integration category learning. Memory & Cognition, 32(4), 582-591.

Waldron, E. M., & Ashby, F. G. (2001).The effects of concurrent task inference in category learning. Psychonomic, Bulletin & Review, 8(1), 168-176.

Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference in perceptual category learning. Memory & Cognition, 34(2), 387-398.

Zeithamova, D., & Maddox, W. T. (2007).The role of visuospatial and verbal working memory in perceptual category learning. Memory & Cognition, 35(6), 1380-1398.

陈英和, 王明怡. (2006). 工作记忆广度对儿童算术认知策略的影响. 心理发展与教育, 22(2), 29-35.

邵蕾蕾. (2012). 类别学习中学习策略的倾向性. 硕士论文. 浙江师范大学.

孙海龙, 邢强. (2014). 反馈对知觉类别学习的影响及其认知神经生理机制. 心理科学进展, 22(1), 67-74.

张娟, 莫雷, 林丹. (2008). 认知神经和神经心理角度的多重类别学习系统. 心理科学, 31(6), 1357-1360.
[1] 唐志文, 邢强. 类别学习语言标签效应的眼动研究[J]. 心理发展与教育, 2013, 29(5): 475-482.
[2] 蔡丹, 李其维, 邓赐平. 工作记忆新探:基于个体差异的研究[J]. 心理发展与教育, 2010, 26(2): 205-209.
[3] 刘凤英, 李红, 张庆林, 姚志刚. 不同类别学习方式的对比研究[J]. 心理发展与教育, 2008, 24(4): 61-67.
[4] 张阔, 阴国恩, 王敬欣. 儿童类别学习中知识效应的年龄差异[J]. 心理发展与教育, 2005, 21(2): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!