心理发展与教育 ›› 2012, Vol. 28 ›› Issue (6): 665-672.

• 论文 • 上一篇    

概化理论方差分量估计的跨分布分析

黎光明1, 张敏强2   

  1. 1. 广州大学教育学院心理学系, 广州510006;
    2. 华南师范大学心理应用研究中心, 广州510631
  • 出版日期:2012-11-15 发布日期:2012-11-15
  • 通讯作者: 张敏强,E-mail:Zhangmq1117@yahoo.com.cn E-mail:Zhangmq1117@yahoo.com.cn
  • 基金资助:
    教育部人文社会科学研究青年基金项目(12YJC190016);全国教育科学“十二五”规划教育部重点课题(GFA111009);广东省教育科学“十二五”规划2011年度研究项目(2011TJK161)

Analysis of Cross-distribution for Estimating Variance Components in Generalizability Theory

LI Guang-ming1, ZHANG Min-qiang2   

  1. 1. Department of Psychology, School of Education, Guangzhou University, Guangzhou 510006, China;
    2. Research Center of Psychological Application, South China Normal University, Guangzhou 510631, China
  • Online:2012-11-15 Published:2012-11-15

摘要: 方差分量估计是进行概化理论分析的关键。采用MonteCarlo模拟技术,探讨心理与教育测量数据分布对概化理论各种方法估计方差分量的影响。数据分布包括正态、二项和多项分布,估计方法包括Traditional、Jackknife、Bootstrap和MCMC方法。结果表明:(1)Traditional方法估计正态分布和多项分布数据的方差分量相对较好,估计二项分布数据需要校正,Jackknife方法准确地估计了三种分布数据的方差分量,校正的Bootstrap方法和有先验信息的MCMC方法(MCMCinf)估计三种分布数据的方差分量结果较好;(2)心理与教育测量数据分布对四种方法估计概化理论方差分量有影响,数据分布制约着各种方差分量估计方法性能的发挥,需要加以区分地使用。

关键词: 概化理论, 方差分量估计, 跨分布分析, 蒙特卡洛模拟(Monte Carlo)

Abstract: Estimating variability is an essential part of generalizability theory and is of central importance.The study adopted Monte Carlo data simulation technique to explore the effect of three data distribution on four method of estimating variance components for generalizability theory.Three data distribution were normal data distribution, dichotomous data distribution and polytomous data distribution.Four estimated methods were traditional method, bootstrap method,jackknife method and Markov Chain Monte Carlo method(MCMC).The results show that the performance of four methods is different for three data distribution.Traditional method is good for normal distribution data and polychromous distribution data.But it is not good and needs to be adjusted for dichotomous distribution data.Jackknife method accurately estimates variance components for three data distribution.As for estimating variance components,adjusted bootstrap method is better than unadjusted bootstrap methods.Compared with MCMC method with non-informative priors,MCMC method with informative priors is good for estimating variance components in generalizability theory.Data distribution has an effect on the method of estimating variance components for generalizability theory.Those methods,which can be applied for normal data distribution,could not be applied for other distribution data such as dichotomous data distribution and polytomous data distribution.Data distribution imposes restrictions on estimating variance components for these four methods.So different methods need be distinguished to use to do a good analysis of cross-distribution for estimating variance components in generalizability theory.

Key words: Generalizability Theory, Estimating variance components, Analysis of cross-distribution, Monte Carlo data simulation

中图分类号: 

  • B841
[1] American Educational Research Association,American Psychological Association,National Council on Measurement in Education.(1985).Standards for educational and psychological testing.Washington,DC:Author.
[2] Brennan,R.L.(1992).Elements of generalizability theory(Rev. ed.).Iowa City,IA:ACT.
[3] Brennan,R.L.(2000).(Mis)conceptions about generalizability theory.Educational Measurement:Issues and Practice,19(1),5-10.
[4] Brennan,R.L.(2001).Generalizability theory.New York:Springer-Verlag.
[5] Brennan,R.L.,Harris,D.J.,&Hanson,B.A.(1987).The bootstrap and other procedures for examining the variability of estimated variance components in testing contexts(ACT Research Report Series87-7).Iowa City,IA:American College Testing Program.
[6] Briggs,D.C.,&Wilson,M.(2007).Generalizability in item response modeling.Journal of Educational Measurement,44(2),131-155.
[7] Feng,W.C.(2002).Applicability of the jackknife procedure for estimating standard errors of variance component estimates in selected random effects G study designs.Unpublished doctoral dissertation,University of Iowa.
[8] Lane,S.,Liu,M.,Ankenmann,R.D.,&Stone,C.A.(1996).Generalizability and validity of mathematics performance assessment.Journal of Educational Measurement,33(1),71-92.
[9] Lunn,D.J.,Thomas,A.,Best,N.,&Spiegelhalter,D.(2000).WinBUGS——a Bayesian modelling framework:concepts,structure, and extensibility.Statistics and Computing,10,325-337.
[10] Martyn,P.,Nicky,B.,Kate,C.,&Karen,V.(2006).CODA:Convergence Diagnosis and Output Analysis for MCMC.R News,6,7-11.
[11] Othman,A.R.(1995).Examining task sampling variability in science performance assessments.Unpublished doctoral dissertation,University of California,Santa Barbara.
[12] Ross,I.,&Robert,G.(1996).R:A language for data analysis and graphics.Journal of Computational and Graphical Statistics,5(3),299-314.
[13] Shavelson,R.J.,&Webb,N.M.(1991).Generalizability theory:A primer(pp.1-15).Newbury Park,CA:Sage.
[14] Sturtz,S.,Ligges,U.,&Gelman,A.(2005).R2WinBUGS:A Package for Running WinBUGS from R.Journal of Statistical Software,12(3),1-16.
[15] Tong,Y.,&Brennan,R.L.(2006).Bootstrap techniques for estimating in generalizability theory(CASMA Research Report No 15).Iowa City,IA:Center for Advanced Studies in Measurement and Assessment,University of Iowa.Available from http://www.education.uiowa.edu/casma
[16] Tong,Y.,&Brennan,R.L.(2007).Bootstrap estimates of standard errors in generalizability theory.Educational and Psychological Measurement,67(5),804-817.
[17] Wiley,E.W.(2001).Bootstrap strategies for variance component estimation:Theoretical and empirical results.Unpublished doctoral dissertation,Stanford University,Stanford,CA.
[18] 焦璨,张敏强,黄庆均,张文怡,黎光明.(2008).非正态分布测量数据对克伦巴赫信度α系数的影响.应用心理学,14(3),276-281.
[19] 漆书青,戴海崎,丁树良.(2002).现代教育与心理测量学原理(pp.42-78).北京:高等教育出版社.
[20] 杨志明,张雷.(2003).测评的概化理论及其应用.北京:教育科学出版社.
[1] 黎光明, 陈子豪, 张敏强. 高校教师教学水平评价概化理论预算限制下最佳样本量估计[J]. 心理发展与教育, 2020, 36(3): 378-384.
[2] 黎光明, 张敏强. 高校教师教学水平评价多元概化理论权重效应分析[J]. 心理发展与教育, 2017, 33(1): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!