心理发展与教育 ›› 2015, Vol. 31 ›› Issue (2): 137-148.doi: 10.16187/j.cnki.issn1001-4918.2015.02.02

• 认知与社会性发展 • 上一篇    下一篇

儿童表征深度的微观变化:路线、速度及来源

张睆1, 辛自强2   

  1. 1. 山西师范大学教师教育学院, 临汾 041004;
    2. 中央财经大学社会发展学院心理学系, 北京 100081
  • 出版日期:2015-03-15 发布日期:2015-03-15
  • 通讯作者: 辛自强,E-mail:xinziqiang@sohu.com E-mail:xinziqiang@sohu.com
  • 基金资助:
    国家自然科学基金资助项目(30970909);教育部人文社会科学研究青年基金(12YJC720001).

The Micro-Change of Representational Depth: Path, Rate and Sources

ZHANG Huan1, XIN Ziqiang2   

  1. 1. School of Teacher Education, Shanxi Normal University, Linfen 041004;
    2. Department of Psychology at School of Social Development, Central University of Finance and Economics, Beijing 100081, China
  • Online:2015-03-15 Published:2015-03-15

摘要: 以往研究表明,表征深度的发展是一个随年龄增长而单调上升的过程,但这些年龄尺度上的横断研究难以说明表征深度变化的发生过程及其机制.本研究采用微观发生法,以齿轮推断任务为材料,探讨了68名小学五年级儿童表征深度的变化路线、速度及来源.结果表明,在整个实验期间,儿童的表征深度发生了显著变化;其变化路线主要体现为从最基本的一级水平向更高级的二、三级水平的递增过程,但这种变化路线的个体间差异较大;变化速度体现出先快后慢的特点;上述变化特点与练习及自我解释、练习模式的特征以及任务难度等因素有关.

关键词: 关系-表征复杂性, 表征深度, 微观发生法

Abstract: As a key index of cognitive development, the representational depth refers to the highest level of relations in a problem represented by individuals. Previous studies have revealed that the development of representational depth is a monotonic increasing process with age. However, these cross-sectional studies conducted in a long time scale (e.g. several years) could only reveal the differences of representational depth in the group level at different ages. Micro-genetic study with dense observation could reveal the change process of representational depth and its mechanism. Based on a sample of 68 fifth graders, the present study used the micro-genetic method to explore the change path and rate of representational depth occurred in the Gear-System task as well as the sources of these changes. There were six sessions in the experiment. In each session the turning direction of driving gear was presented and then participants were required to infer the turning direction of target gear. They were asked to think aloud about their solution attempts, and the recorded protocol was analyzed to determine their representational depth in each task. Results showed that: (1) the development of children's representational depth could occur at a short time scale. (2) This micro-change path is mainly a monotonic increasing process from first-level depth to third-level depth, while there are great individual differences. (3) The rate of change is more rapid at the beginning stage than at the following stages. (4) More frequent practice and self explanation, more complex practice patterns and more difficult tasks could facilitate the increasing of representational depth. It is concluded that the change path of representational depth at the macro and micro levels may be similar, which suggests that representational depth can be viewed as a key index of children's ability to represent problems. Furthermore, although the frequency of practice and the difficulty of task have an effect on representational depth, the effect seems to be weakened as practice continued.

Key words: relational-representational complexity, representational depth, micro-genetic method

中图分类号: 

  • B844
Adolph, K. E., Robinson, S. R., Young, J. W., & Gill, A. F. (2008). What is the shape of developmental change? Psychological Review, 115, 527-543.
Boncoddo, R., Dixon, J. A., & Kelley, E. (2010). The emergence of a novel representation from action: evidence from preschoolers. Developmental Science, 13, 370-377.
Carlson, R. A., & Yaure, R. G. (1990). Practice schedules and the use of component skills in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 484-496.
Dixon, J. A., & Bangert, A. S. (2002). The prehistory of discovery: Precursors of representational change in solving gear system problems. Developmental Psychology, 38, 918-932.
Dixon, J. A., & Kelley, E. (2007). Theory revision and redescription. Current Directions in Psychological Science, 16(2), 111-115.
Goode, M. K., Geraci, L., & Roediger, H. L. (2008). Superiority of variable to repeated practice in transfer on anagram solution. Psychonomic Bulletin & Review, 15, 662-666.
Helsdingen, A. S., Van Gog, T., & Van Merrinboer, J. J. G. (2011a). The effects of practice schedule on learning a complex judgment task. Learning and Instruction, 21, 126-136.
Helsdingen, A. S., Van Gog, T., & Van Merrinboer, J. J. G. (2011b). The effects of practice schedule and critical thinking prompts on learning and transfer of a complex judgment task. Journal of Educational Psychology, 103, 383-398.
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.
Karmiloff-Smith, A. (2013).‘Microgenetics': No single method can elucidate human learning. Human Development, 56, 47-51.
Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797-2822.
Lavelli, M., Pantoja, A., Hsu, H., Messinger, D., & Fogel, A. (2005). Using microgenetic designs to study change processes. In D. Teti (Ed.), Handbook of research methods in developmental science (pp. 40-65). Oxford, England: Blackwell.
Liu, C. H., & Xin, Z. Q. (2008). Relationship between the development of pupil's representation of area-of-rectangle problem and their fluid intelligence. Studies of Psychology and Behavior, 6(03), 206-211.
Piaget, J., & Inhelder, B. (1981). The Psychology of the Child (F. Y. Wu, Trans.).Beijing: The Commercial Press.
Rau, M. A., Aleven, V., & Rummel, N. (2012). Interleaved practice in multi-dimensional learning tasks: Which dimension should we interleave? Learning and Instruction, 23, 98-114.
Rodríguez, P., Lago, M. O., Enesco, I., & Guerrero, S. (2012). Children's understandings of counting: Detection of errors and pseudoerrors by kindergarten and primary school children. Journal of Experimental Child Psychology, 114, 35-46.
Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20, 457-497.
Siegler, R. S. (2004). U—shaped interest in U—shaped development—and what it means. Journal of Cognition and Development, 5, 1-10.
Siegler, R. S. (2006). Microgenetic analyses of learning. In W. Damon & R. M. Lerner (Series Eds.), & D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of child psychology: Vol 2: Cogniton, perception, and language (6th ed., pp. 464-510). Hoboken, NJ: Wiley
Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46, 606-620.
Thevenot, C., & Oakhill, J. (2005). The strategic use of alternative representations in arithmetic word problem solving. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 58, 1311-1323.
Trudeau, J. J., & Dixon, J. A. (2007). Embodiment and abstraction: Actions create relational representations. Psychonomic Bulletin and Review, 14, 994-1000.
Xin, Z. (2008). Fourth through sixth graders' representations of area-of-rectangle problems: Influences of relational complexity and cognitive holding power. The Journal of Psychology: Interdisciplinary and Applied, 142, 581-600.
Xin, Z. (2003). Validation of relational-representational complexity model. Acta Psychological Sinica, 35(4), 504-513.
Xin, Z. (2007). Relational-representational complexity model. Psychological Development and Education, 23(3), 122-128.
Xin, Z., & Lin, C. D. (2002). The microgenetic method: Focus on cognitive change. Advances in Psychological Science, 10(2), 206-212.
Xin, Z., & Zhang, L. (2009). Measuring students' representation level on arithmetic word problems: Based on the relational-representational complexity model. Psychological Development and Education, 25(1), 34-40.
Xin, Z., & Zhang, L. (2006). The change of representation and it's correlates: A microgenetic study. Acta Psychological Sinica, 38, 532-542.
Xin, Z., Zhang, L. Lin, C. D., & Chi, L. P. (2006). Change of Children's representational level in the context of practice. Acta Psychological Sinica, 38, 189-196.
Zhang, L. (2008). Children's representation on tasks with different complexities and the relationship between representation and working memory. Unpublished doctoral dissertation. Beijing Normal University.
Zhang, L., Xin, Z., Lin, C., & Li, H. (2009). The complexity of the Latin Square task and its influence on children's performance. Chinese Science Bulletin, 54, 766-775.
Zhang, L., Xin, Z. & Gulizha, B. (2010). The developmental characteristics of analogical reasoning on tasks with different complexity in 5-9 years old children. Psychological Development and Education, 26, 584-591.
刘春晖, 辛自强. (2008). 小学生数学问题表征发展与流体智力的关系. 心理与行为研究, 6(03), 206-211.
皮亚杰, 英海尔德. (1981). 儿童心理学(吴福元 译). 北京: 商务印书馆.
辛自强 (2003). 关系-表征复杂性模型的检验. 心理学报, 35(4), 504-513.
辛自强 (2007). 关系-表征复杂性模型. 心理发展与教育, 23(3), 122-128.
辛自强, 林崇德. (2002). 微观发生法:聚焦认知变化. 心理科学进展, 10(2), 206-212.
辛自强, 张莉. (2009). 基于关系-表征复杂性模型的数学应用题表征能力测验. 心理发展与教育, 25(1), 34-40.
辛自强, 张丽. (2006). 表征变化及其影响因素的微观发生研究. 心理学报, 38, 532-542.
辛自强, 张丽, 林崇德, 池丽萍. (2006). 练习背景下表征水平的变化. 心理学报, 38, 189-196.
张丽. (2008). 儿童对复杂性不同任务的表征及其与工作记忆的关系. 北京师范大学.博士学位论文
张莉, 辛自强, 古丽扎伯克力. (2010). 5~9岁儿童在不同复杂性任务上类比推理的发展特点. 心理发展与教育, 26, 584-591.
[1] 张莉, 辛自强, 古丽扎伯克力. 5~9岁儿童在不同复杂性任务上类比推理的发展特点[J]. 心理发展与教育, 2010, 26(6): 584-591.
[2] 辛自强, 张莉. 基于关系-表征复杂性模型的数学应用题表征能力测验[J]. 心理发展与教育, 2009, 25(1): 34-40,53.
[3] 张丽, 辛自强. 平衡秤任务复杂性的事前与事后分析[J]. 心理发展与教育, 2008, 24(2): 46-53.
[4] 毕有余, 张向葵. 二年级小学生“记”“忆”策略的微观发生研究[J]. 心理发展与教育, 2008, 24(1): 25-30.
[5] 王瑞明, 莫雷, ZHE Chen. 使用微观发生法促进儿童的认知发展[J]. 心理发展与教育, 2005, 21(1): 124-128.
[6] 张学民, 鲁志鲲, 申继亮, 林崇德. 小学教师课堂信息表征对知觉加工能力影响的研究[J]. 心理发展与教育, 2004, 20(3): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!