心理发展与教育 ›› 2008, Vol. 24 ›› Issue (3): 84-88.

• 教与学心理学 • 上一篇    下一篇

不同数学水平儿童的数量估计:图形排列方式的影响

司继伟1, 陈小凤1, 徐继红2   

  1. 1. 山东师范大学心理学院, 济南, 250014;
    2. 北京师范大学认知神经科学与学习研究所, 北京, 100875
  • 出版日期:2008-07-15 发布日期:2008-07-15
  • 作者简介:司继伟,男,山东师范大学心理学院副教授.E-mail:sijiwei1974@126.com.
  • 基金资助:
    全国教育科学“十五”规划教育部青年专项课题(EBA030406)成果;“泰山学者”建设工程资助;山东省“十一五”强化建设重点学科专项经费资助

Children’s Numerical Estimation with Different Mathematical Achievement Levels: Effect of Different Object Arrangements

SI Ji-wei1, CHEN Xiao-feng1, XU Jing-hong2   

  1. 1. School of Psychology, Shandong Normal University, Jinan 250014;
    2. Institute of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875
  • Online:2008-07-15 Published:2008-07-15

摘要: 采用参照蔡方之等(2004)所设计的图形材料,考察了不同图形排列方式对不同数学学业水平小学生数量估计的影响。35名三年级被试参加了本实验,其中优生20人,差生15人。行为数据和口头报告分析结果显示:(1)优生是更合理的数量估计者。优生数量估计的绝对误差百分比明显小于差生。(2)图形排列方式对数量估计产生了显著影响。不同图形排列方式可能会造成规则-随机数量错觉和均匀-不均匀数量错觉,从而使均匀及规则图形被高估幅度更大。

关键词: 数量估计, 数学成绩, 图形排列方式

Abstract: The aim of the present study is to investigate whether regular or irregular patterns of objects and well or unwell distributed patterns of objects have the impact on students' estimation accuracy with different levels of mathematical achievements.35 third graders from a primary school took part in this experiment.Several conclusions were drawn from the results: (1) students with higher mathematical achievement were more efficient estimators.Their percent absolute error were much lower than their counterparts',the difference between them were significant; (2) different object arrangements caused a regular-random numerosity illusion and a well 2 unwell distributed numerosity illusion and there for,well distributed or regular graphs were more often overestimated.

Key words: numerical, estimation, math achievement, object arrangement

中图分类号: 

  • G442
[1] 蔡方之,黄淑丽,颜乃欣.图形排列方式对数量估计的影响.台湾心理学会第43届年会会议论文集,国立政治大学,2004,9.
[2] 徐继红,司继伟.干扰刺激对成人数量估计的影响.心理科学,2008,31(1):195-199.
[3] Siegler R,Booth J.Development of numerical estimation:A Review.In J.I.D.Campbell (Ed.),Handbook of mathematical cognition (pp197-212).New York:Psychology Press,2005.
[4] Siegel A W,Goldsmith L T,Madson C R.Skill in estimation problems of extent and numerosity.Journal for Research in Mathematics Education,1982,13 (2):211-232.
[5] Luwel K,Verschaffel L,Onghema P,et al.Children's strategies for numerosity judgment in square grids of different sizes.Psychologica Belgica,2000,40:183-209.
[6] Verschaffel L,DeCorte E,Lamotc C,et al.The acquisition and use of an adaptive strategy for estimatitig numerosity.European Journal of Psychology of Education,1998,13 (3):347-370.
[7] 徐继红.大学生数量估计的认知方式差异及ERP研究.山东师范大学硕士学位论文,2007.
[8] Atkinson J,Francis M R,Cambell F W.The dependence of visual ntunerosity limit on orientation,color and grouping in stimulus.Perception,1976,5 (3),355-342.
[9] Allik F,Tuulmets T.The perception of visual numeroeity.In C D John (Eds.),Vision and visual dysfunction.Boca Raton:CRC Press.1991,pp.125-142.
[10] Burgess A,Barlow H B.The precision of numeresity discrimination in arrays of random dots.Vision Research,1983,23 (8):811-820.
[11] Booth J,Siegler R.Developmental and Individual Differences in Pure Numerical Estimation.Developmental Psychology,2006,41 (6):189-201.
[12] 张曼华,杨凤池,张宏伟.学习苦难儿童注意力特点研究.中国学校卫生,2004,25(2):202-203.
[13] 凌光明.小学低年级学业不良儿童的有意注意稳定性研究.苏州大学硕士学位论文,2001.
[1] 张婕, 黄碧娟, 司继伟, 官冬晓. 乡镇小学生的数学焦虑与数学成绩:数学自我效能感和数学元认知的链式中介作用[J]. 心理发展与教育, 2018, 34(4): 453-460.
[2] 张平平, 李凌艳, 辛涛. 学校氛围对学生数学成绩影响的跨文化比较:基于多水平分析的结果[J]. 心理发展与教育, 2011, 27(6): 625-632.
[3] 何先友. 小学生数学自我效能、自我概念与数学成绩关系的研究[J]. 心理发展与教育, 1998, 14(1): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!